mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 19:13:01 +00:00
[booster] added the plugin base and torch ddp plugin (#3180)
* [booster] added the plugin base and torch ddp plugin * polish code * polish code * polish code
This commit is contained in:
147
colossalai/booster/plugin/torch_ddp_plugin.py
Normal file
147
colossalai/booster/plugin/torch_ddp_plugin.py
Normal file
@@ -0,0 +1,147 @@
|
||||
import random
|
||||
from typing import Callable, List, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from colossalai.booster.interface import OptimizerWrapper
|
||||
|
||||
from .plugin_base import Plugin
|
||||
|
||||
__all__ = ['TorchDDPPlugin']
|
||||
|
||||
|
||||
class TorchDDPPlugin(Plugin):
|
||||
"""
|
||||
Plugin for PyTorch DDP.
|
||||
|
||||
Example:
|
||||
>>> from colossalai.booster import Booster
|
||||
>>> from colossalai.booster.plugin import TorchDDPPlugin
|
||||
>>>
|
||||
>>> model, train_dataset, optimizer, criterion = ...
|
||||
>>> plugin = TorchDDPPlugin()
|
||||
|
||||
>>> train_dataloader = plugin.prepare_train_dataloader(train_dataset, batch_size=8)
|
||||
>>> booster = Booster(plugin=plugin)
|
||||
>>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion)
|
||||
|
||||
Args:
|
||||
broadcast_buffers (bool, optional): Whether to broadcast buffers in the beginning of training. Defaults to True.
|
||||
bucket_cap_mb (int, optional): The bucket size in MB. Defaults to 25.
|
||||
find_unused_parameters (bool, optional): Whether to find unused parameters. Defaults to False.
|
||||
check_reduction (bool, optional): Whether to check reduction. Defaults to False.
|
||||
gradient_as_bucket_view (bool, optional): Whether to use gradient as bucket view. Defaults to False.
|
||||
static_graph (bool, optional): Whether to use static graph. Defaults to False.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
broadcast_buffers: bool = True,
|
||||
bucket_cap_mb: int = 25,
|
||||
find_unused_parameters: bool = False,
|
||||
check_reduction: bool = False,
|
||||
gradient_as_bucket_view: bool = False,
|
||||
static_graph: bool = False) -> None:
|
||||
|
||||
assert dist.is_initialized(
|
||||
), 'torch.distributed is not initialized, please use colossalai.launch to create the distributed environment'
|
||||
self.rank = dist.get_rank()
|
||||
self.world_size = dist.get_world_size()
|
||||
self.ddp_kwargs = dict(broadcast_buffers=broadcast_buffers,
|
||||
bucket_cap_mb=bucket_cap_mb,
|
||||
find_unused_parameters=find_unused_parameters,
|
||||
check_reduction=check_reduction,
|
||||
gradient_as_bucket_view=gradient_as_bucket_view,
|
||||
static_graph=static_graph)
|
||||
|
||||
def support_no_sync(self) -> bool:
|
||||
return True
|
||||
|
||||
def control_precision(self) -> bool:
|
||||
return False
|
||||
|
||||
def supported_precisions(self) -> List[str]:
|
||||
return ['fp16', 'fp16_apex', 'bf16', 'fp8']
|
||||
|
||||
def control_device(self) -> bool:
|
||||
return True
|
||||
|
||||
def supported_devices(self) -> List[str]:
|
||||
return ['cuda']
|
||||
|
||||
def prepare_train_dataloader(self,
|
||||
dataset,
|
||||
batch_size,
|
||||
shuffle=False,
|
||||
seed=1024,
|
||||
drop_last=False,
|
||||
pin_memory=False,
|
||||
num_workers=0,
|
||||
**kwargs):
|
||||
r"""
|
||||
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
||||
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
||||
|
||||
Note:
|
||||
1. Evaluation datasets should not be passed to this function.
|
||||
|
||||
Args:
|
||||
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
||||
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
||||
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
||||
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
||||
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
||||
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
||||
the batch size, then the last batch will be smaller, defaults to False.
|
||||
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
||||
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
||||
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
||||
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
||||
|
||||
Returns:
|
||||
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
||||
"""
|
||||
_kwargs = kwargs.copy()
|
||||
sampler = DistributedSampler(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
|
||||
|
||||
# Deterministic dataloader
|
||||
def seed_worker(worker_id):
|
||||
worker_seed = seed
|
||||
np.random.seed(worker_seed)
|
||||
torch.manual_seed(worker_seed)
|
||||
random.seed(worker_seed)
|
||||
|
||||
return DataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
worker_init_fn=seed_worker,
|
||||
drop_last=drop_last,
|
||||
pin_memory=pin_memory,
|
||||
num_workers=num_workers,
|
||||
**_kwargs)
|
||||
|
||||
def configure(
|
||||
self,
|
||||
model: nn.Module,
|
||||
optimizer: Optimizer,
|
||||
criterion: Callable = None,
|
||||
dataloader: DataLoader = None,
|
||||
lr_scheduler: LRScheduler = None,
|
||||
) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]:
|
||||
# cast model to cuda
|
||||
model = model.cuda()
|
||||
|
||||
# wrap the model with PyTorch DDP
|
||||
model = DDP(model, **self.ddp_kwargs)
|
||||
|
||||
if not isinstance(optimizer, OptimizerWrapper):
|
||||
optimizer = OptimizerWrapper(optimizer)
|
||||
|
||||
return model, optimizer, criterion, dataloader, lr_scheduler
|
Reference in New Issue
Block a user