mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[Inference]Add Nopadding Llama Modeling (#5327)
* add nopadding llama modeling * add nopadding_llama.py * rm unused codes * fix bugs in test_xine_copy.py * fix code style
This commit is contained in:
@@ -2,7 +2,6 @@ import pytest
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
from colossalai.inference.modeling.models.llama import get_cos_sin
|
||||
from colossalai.kernel.triton import get_xine_cache
|
||||
|
||||
try:
|
||||
@@ -16,6 +15,29 @@ except ImportError:
|
||||
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def get_cos_sin(lengths, cos_cache, sin_cache, is_prompts, dtype):
|
||||
"""
|
||||
Get cos and sin for the cache, and return nopad format.
|
||||
Args:
|
||||
lengths: shape(num_seqs,), stores lenghth of each sequence.
|
||||
cos_cache: shape(max_rotary_position(e.g.2048), head_dim), cos cache constrcuted in model.
|
||||
sin_cache: shape(max_rotary_position(e.g.2048), head_dim), sin cache constrcuted in model.
|
||||
is_prompts: bool, mark if in prefill mode.
|
||||
dtype: The data type of this inference process.
|
||||
"""
|
||||
|
||||
if is_prompts:
|
||||
index_arrays = [torch.arange(length) for length in lengths]
|
||||
else:
|
||||
index_arrays = [(length - 1).view(-1) for length in lengths]
|
||||
indices = torch.cat(index_arrays, dim=-1)
|
||||
cos_output = cos_cache[indices].to(dtype=dtype)
|
||||
sin_output = sin_cache[indices].to(dtype=dtype)
|
||||
|
||||
return (cos_output, sin_output)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("BATCH_SIZE", [4])
|
||||
@pytest.mark.parametrize("MAX_SEQ_LEN", [64])
|
||||
@pytest.mark.parametrize("HEAD_DIM", [64])
|
||||
@@ -23,15 +45,18 @@ TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
|
||||
def test_get_xine_cache(BATCH_SIZE, MAX_SEQ_LEN, HEAD_DIM, dtype):
|
||||
MAX_TOTAL_TOKENS = BATCH_SIZE * MAX_SEQ_LEN
|
||||
cos_cache = torch.randn((MAX_TOTAL_TOKENS, HEAD_DIM), dtype=dtype, device="cuda")
|
||||
sin_cache = torch.randn((MAX_TOTAL_TOKENS, HEAD_DIM), dtype=dtype, device="cuda")
|
||||
lengths = torch.randint(2, MAX_SEQ_LEN, (BATCH_SIZE,), device="cuda")
|
||||
# prefill
|
||||
cos_ref, sin_ref = get_cos_sin(lengths, cos_cache, cos_cache, is_prompts=True, dtype=dtype)
|
||||
cos = get_xine_cache(lengths, cos_cache, is_prompts=True)
|
||||
cos_ref, sin_ref = get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=True, dtype=dtype)
|
||||
cos, sin = get_xine_cache(lengths, cos_cache, sin_cache, is_prompts=True)
|
||||
assert torch.allclose(cos, cos_ref)
|
||||
assert torch.allclose(sin, sin_ref)
|
||||
# decoding
|
||||
ncos_ref, sin_ref = get_cos_sin(lengths, cos_cache, cos_cache, is_prompts=False, dtype=dtype)
|
||||
cos = get_xine_cache(lengths, cos_cache, is_prompts=False)
|
||||
ncos_ref, sin_ref = get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=False, dtype=dtype)
|
||||
cos, sin = get_xine_cache(lengths, cos_cache, sin_cache, is_prompts=False)
|
||||
assert torch.allclose(cos, ncos_ref)
|
||||
assert torch.allclose(sin, sin_ref)
|
||||
|
||||
|
||||
configs = [
|
||||
|
Reference in New Issue
Block a user