|
|
|
@@ -1,28 +1,81 @@
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
import torch
|
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
|
|
|
|
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import ViewHandler
|
|
|
|
|
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
|
|
|
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
|
from colossalai.fx import ColoGraphModule, ColoTracer
|
|
|
|
|
from colossalai.initialize import launch
|
|
|
|
|
from colossalai.logging import disable_existing_loggers
|
|
|
|
|
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
|
|
|
|
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
|
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ViewModel(nn.Module):
|
|
|
|
|
class ConvViewModel(nn.Module):
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
def __init__(self, tgt_shape):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.tgt_shape = tgt_shape
|
|
|
|
|
|
|
|
|
|
def forward(self, input, other):
|
|
|
|
|
conv_node = nn.functional.conv2d(input, other)
|
|
|
|
|
reshape_node = conv_node.view(32, 4, 32, 32, 4)
|
|
|
|
|
conv_node = nn.functional.conv2d(input, other, bias=None)
|
|
|
|
|
reshape_node = conv_node.view(*self.tgt_shape)
|
|
|
|
|
return reshape_node
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_view_handler():
|
|
|
|
|
model = ViewModel()
|
|
|
|
|
class LinearViewModel(nn.Module):
|
|
|
|
|
|
|
|
|
|
def __init__(self, tgt_shape):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.tgt_shape = tgt_shape
|
|
|
|
|
|
|
|
|
|
def forward(self, input, other):
|
|
|
|
|
linear_node = nn.functional.linear(input, other, bias=None)
|
|
|
|
|
reshape_node = linear_node.view(*self.tgt_shape)
|
|
|
|
|
return reshape_node
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_view_handler(rank, tgt_shape, model_cls, world_size, port):
|
|
|
|
|
disable_existing_loggers()
|
|
|
|
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
|
model = model_cls(tgt_shape).cuda()
|
|
|
|
|
|
|
|
|
|
if model_cls.__name__ == 'ConvViewModel':
|
|
|
|
|
input = torch.rand(8, 8, 66, 66).to('cuda')
|
|
|
|
|
other = torch.rand(16, 8, 3, 3).to('cuda')
|
|
|
|
|
# index of conv node in computation graph
|
|
|
|
|
node_index = 2
|
|
|
|
|
# total number of conv strategies
|
|
|
|
|
strategy_number = 16
|
|
|
|
|
if model_cls.__name__ == 'LinearViewModel':
|
|
|
|
|
input = torch.rand(8, 16, 64, 32).to('cuda')
|
|
|
|
|
other = torch.rand(64, 32).to('cuda')
|
|
|
|
|
# index of linear node in computation graph
|
|
|
|
|
node_index = 2
|
|
|
|
|
# total number of linear strategies
|
|
|
|
|
strategy_number = 23
|
|
|
|
|
|
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
|
|
|
|
|
|
|
|
|
numerical_test_for_node_strategy(model=model,
|
|
|
|
|
device_mesh=device_mesh,
|
|
|
|
|
node_index=node_index,
|
|
|
|
|
strategy_number=strategy_number,
|
|
|
|
|
input_args=[input, other],
|
|
|
|
|
meta_arg_names=['input', 'other'],
|
|
|
|
|
node_type='following')
|
|
|
|
|
tracer = ColoTracer()
|
|
|
|
|
if model_cls.__name__ == 'ConvViewModel':
|
|
|
|
|
# graph():
|
|
|
|
|
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
|
|
|
|
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
|
|
|
@@ -31,25 +84,47 @@ def test_view_handler():
|
|
|
|
|
# return view
|
|
|
|
|
graph = tracer.trace(model,
|
|
|
|
|
meta_args={
|
|
|
|
|
"input": torch.rand(8, 8, 66, 66).to('meta'),
|
|
|
|
|
"input": torch.rand(8, 16, 66, 66).to('meta'),
|
|
|
|
|
"other": torch.rand(16, 8, 3, 3).to('meta'),
|
|
|
|
|
})
|
|
|
|
|
gm = ColoGraphModule(model, graph)
|
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
|
|
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
|
|
|
|
conv_mod_node = list(graph.nodes)[2]
|
|
|
|
|
if model_cls.__name__ == 'LinearViewModel':
|
|
|
|
|
# graph():
|
|
|
|
|
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
|
|
|
|
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
|
|
|
|
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
|
|
|
|
|
# %view : [#users=1] = call_method[target=view](args = (%linear, 32, 4, 32, 32, 4), kwargs = {})
|
|
|
|
|
# return view
|
|
|
|
|
graph = tracer.trace(model,
|
|
|
|
|
meta_args={
|
|
|
|
|
"input": torch.rand(8, 16, 64, 32).to('meta'),
|
|
|
|
|
"other": torch.rand(64, 32).to('meta'),
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
gm = ColoGraphModule(model, graph)
|
|
|
|
|
|
|
|
|
|
previous_mod_node = list(graph.nodes)[2]
|
|
|
|
|
view_node = list(graph.nodes)[3]
|
|
|
|
|
view_strategies_vector = StrategiesVector(view_node)
|
|
|
|
|
conv_strategies_vector = StrategiesVector(conv_mod_node)
|
|
|
|
|
previous_strategies_vector = StrategiesVector(previous_mod_node)
|
|
|
|
|
|
|
|
|
|
# build handler
|
|
|
|
|
conv_handler = ConvFunctionHandler(node=conv_mod_node,
|
|
|
|
|
if model_cls.__name__ == 'ConvViewModel':
|
|
|
|
|
|
|
|
|
|
conv_handler = ConvFunctionHandler(node=previous_mod_node,
|
|
|
|
|
device_mesh=device_mesh,
|
|
|
|
|
strategies_vector=conv_strategies_vector)
|
|
|
|
|
strategies_vector=previous_strategies_vector)
|
|
|
|
|
conv_handler.register_strategy(compute_resharding_cost=False)
|
|
|
|
|
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
|
|
|
|
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
|
|
|
|
|
|
|
|
|
|
if model_cls.__name__ == 'LinearViewModel':
|
|
|
|
|
assert len(previous_strategies_vector) == 0
|
|
|
|
|
linear_handler = LinearFunctionHandler(node=previous_mod_node,
|
|
|
|
|
device_mesh=device_mesh,
|
|
|
|
|
strategies_vector=previous_strategies_vector)
|
|
|
|
|
linear_handler.register_strategy(compute_resharding_cost=False)
|
|
|
|
|
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
|
|
|
|
|
|
|
|
|
|
view_handler = ViewHandler(node=view_node, device_mesh=device_mesh, strategies_vector=view_strategies_vector)
|
|
|
|
|
|
|
|
|
|
view_handler.register_strategy(compute_resharding_cost=False)
|
|
|
|
@@ -62,7 +137,10 @@ def test_view_handler():
|
|
|
|
|
# make sure they have valid values
|
|
|
|
|
assert op_data.data is not None
|
|
|
|
|
|
|
|
|
|
if model_cls.__name__ == 'ConvViewModel':
|
|
|
|
|
assert mapping['input'].name == "conv2d"
|
|
|
|
|
else:
|
|
|
|
|
assert mapping['input'].name == "linear"
|
|
|
|
|
assert mapping['input'].data.is_meta
|
|
|
|
|
assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64])
|
|
|
|
|
assert mapping['input'].type == OperationDataType.ARG
|
|
|
|
@@ -70,12 +148,16 @@ def test_view_handler():
|
|
|
|
|
|
|
|
|
|
assert mapping['output'].name == "view"
|
|
|
|
|
assert mapping['output'].data.is_meta
|
|
|
|
|
assert mapping['output'].data.shape == torch.Size([32, 4, 32, 32, 4])
|
|
|
|
|
assert mapping['output'].data.shape == torch.Size(tgt_shape)
|
|
|
|
|
assert mapping['output'].type == OperationDataType.OUTPUT
|
|
|
|
|
|
|
|
|
|
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
|
|
|
|
assert len(view_strategies_vector) == len(conv_strategies_vector)
|
|
|
|
|
assert len(view_strategies_vector) == len(previous_strategies_vector)
|
|
|
|
|
strategy_name_list = [strategy.name for strategy in view_strategies_vector]
|
|
|
|
|
|
|
|
|
|
if model_cls.__name__ == 'ConvViewModel':
|
|
|
|
|
|
|
|
|
|
if tgt_shape == (32, 4, 64, 16, 4):
|
|
|
|
|
assert '[S0, S1, R, R] -> FULLY REPLICATED_0' in strategy_name_list
|
|
|
|
|
assert '[S1, S0, R, R] -> FULLY REPLICATED_1' in strategy_name_list
|
|
|
|
|
assert '[S0, R, R, R] -> [S0, R, R, R, R]_2' in strategy_name_list
|
|
|
|
@@ -93,6 +175,91 @@ def test_view_handler():
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R]_14' in strategy_name_list
|
|
|
|
|
assert '[R, S01, R, R] -> FULLY REPLICATED_15' in strategy_name_list
|
|
|
|
|
|
|
|
|
|
if tgt_shape == (8, 4, 4, 64, 16, 4):
|
|
|
|
|
assert '[S0, S1, R, R] -> [S0, S1, R, R, R, R]_0' in strategy_name_list
|
|
|
|
|
assert '[S1, S0, R, R] -> [S1, S0, R, R, R, R]_1' in strategy_name_list
|
|
|
|
|
assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_2' in strategy_name_list
|
|
|
|
|
assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_3' in strategy_name_list
|
|
|
|
|
assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_4' in strategy_name_list
|
|
|
|
|
assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_5' in strategy_name_list
|
|
|
|
|
assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_6' in strategy_name_list
|
|
|
|
|
assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_7' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_8' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_9' in strategy_name_list
|
|
|
|
|
assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_10' in strategy_name_list
|
|
|
|
|
assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_11' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_12' in strategy_name_list
|
|
|
|
|
assert '[S01, R, R, R] -> [S01, R, R, R, R, R]_13' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_14' in strategy_name_list
|
|
|
|
|
assert '[R, S01, R, R] -> [R, S01, R, R, R, R]_15' in strategy_name_list
|
|
|
|
|
|
|
|
|
|
if model_cls.__name__ == 'LinearViewModel':
|
|
|
|
|
|
|
|
|
|
if tgt_shape == (32, 4, 64, 16, 4):
|
|
|
|
|
assert '[S0, R, R, S1] -> [S0, R, R, S1, R]_0' in strategy_name_list
|
|
|
|
|
assert '[R, S0, R, S1] -> FULLY REPLICATED_1' in strategy_name_list
|
|
|
|
|
assert '[R, R, S0, S1] -> [R, R, S0, S1, R]_2' in strategy_name_list
|
|
|
|
|
assert '[S1, R, R, S0] -> [S1, R, R, S0, R]_3' in strategy_name_list
|
|
|
|
|
assert '[R, S1, R, S0] -> FULLY REPLICATED_4' in strategy_name_list
|
|
|
|
|
assert '[R, R, S1, S0] -> [R, R, S1, S0, R]_5' in strategy_name_list
|
|
|
|
|
assert '[S0, R, R, R] -> [S0, R, R, R, R]_6' in strategy_name_list
|
|
|
|
|
assert '[R, S0, R, R] -> FULLY REPLICATED_7' in strategy_name_list
|
|
|
|
|
assert '[R, R, S0, R] -> [R, R, S0, R, R]_8' in strategy_name_list
|
|
|
|
|
assert '[S1, R, R, R] -> [S1, R, R, R, R]_9' in strategy_name_list
|
|
|
|
|
assert '[R, S1, R, R] -> FULLY REPLICATED_10' in strategy_name_list
|
|
|
|
|
assert '[R, R, S1, R] -> [R, R, S1, R, R]_11' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S1] -> [R, R, R, S1, R]_12' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S0] -> [R, R, R, S0, R]_13' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R]_14' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R]_15' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S0] -> [R, R, R, S0, R]_16' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S1] -> [R, R, R, S1, R]_17' in strategy_name_list
|
|
|
|
|
assert '[S01, R, R, R] -> [S01, R, R, R, R]_18' in strategy_name_list
|
|
|
|
|
assert '[R, S01, R, R] -> FULLY REPLICATED_19' in strategy_name_list
|
|
|
|
|
assert '[R, R, S01, R] -> [R, R, S01, R, R]_20' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R]_21' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S01] -> [R, R, R, S01, R]_22' in strategy_name_list
|
|
|
|
|
|
|
|
|
|
if tgt_shape == (8, 4, 4, 64, 16, 4):
|
|
|
|
|
assert '[S0, R, R, S1] -> [S0, R, R, R, S1, R]_0' in strategy_name_list
|
|
|
|
|
assert '[R, S0, R, S1] -> [R, S0, R, R, S1, R]_1' in strategy_name_list
|
|
|
|
|
assert '[R, R, S0, S1] -> [R, R, R, S0, S1, R]_2' in strategy_name_list
|
|
|
|
|
assert '[S1, R, R, S0] -> [S1, R, R, R, S0, R]_3' in strategy_name_list
|
|
|
|
|
assert '[R, S1, R, S0] -> [R, S1, R, R, S0, R]_4' in strategy_name_list
|
|
|
|
|
assert '[R, R, S1, S0] -> [R, R, R, S1, S0, R]_5' in strategy_name_list
|
|
|
|
|
assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_6' in strategy_name_list
|
|
|
|
|
assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_7' in strategy_name_list
|
|
|
|
|
assert '[R, R, S0, R] -> [R, R, R, S0, R, R]_8' in strategy_name_list
|
|
|
|
|
assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_9' in strategy_name_list
|
|
|
|
|
assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_10' in strategy_name_list
|
|
|
|
|
assert '[R, R, S1, R] -> [R, R, R, S1, R, R]_11' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S1] -> [R, R, R, R, S1, R]_12' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S0] -> [R, R, R, R, S0, R]_13' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_14' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_15' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S0] -> [R, R, R, R, S0, R]_16' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S1] -> [R, R, R, R, S1, R]_17' in strategy_name_list
|
|
|
|
|
assert '[S01, R, R, R] -> [S01, R, R, R, R, R]_18' in strategy_name_list
|
|
|
|
|
assert '[R, S01, R, R] -> [R, S01, R, R, R, R]_19' in strategy_name_list
|
|
|
|
|
assert '[R, R, S01, R] -> [R, R, R, S01, R, R]_20' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_21' in strategy_name_list
|
|
|
|
|
assert '[R, R, R, S01] -> [R, R, R, R, S01, R]_22' in strategy_name_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@run_on_environment_flag(name='AUTO_PARALLEL')
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
|
@parameterize('tgt_shape', [(32, 4, 64, 16, 4), (8, 4, 4, 64, 16, 4)])
|
|
|
|
|
@parameterize('model_cls', [ConvViewModel, LinearViewModel])
|
|
|
|
|
def test_view_handler(tgt_shape, model_cls):
|
|
|
|
|
world_size = 4
|
|
|
|
|
run_func = partial(check_view_handler,
|
|
|
|
|
tgt_shape=tgt_shape,
|
|
|
|
|
model_cls=model_cls,
|
|
|
|
|
world_size=world_size,
|
|
|
|
|
port=free_port())
|
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
test_view_handler()
|
|
|
|
|