mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 17:46:42 +00:00
[autoparallel] add bcast op handler (#1600)
* [autoparallel] add bcast op handler * polish code * add more BCAST FUNC OP * polish code * add exception handler * polish
This commit is contained in:
71
tests/test_auto_parallel/test_bcast_handler.py
Normal file
71
tests/test_auto_parallel/test_bcast_handler.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
|
||||
from colossalai.auto_parallel.solver.options import SolverOptions
|
||||
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class ConvModel(nn.Module):
|
||||
|
||||
def __init__(self, c_in, c_out):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3, padding=1)
|
||||
self.conv2 = nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, stride=2)
|
||||
|
||||
def forward(self, x):
|
||||
x1 = self.conv1(x)
|
||||
x2 = x1 + 1
|
||||
x1 = torch.reshape(x1, [1, -1, 64, 1])
|
||||
x3 = self.conv2(x1)
|
||||
x3 = torch.reshape(x3, [4, 1, 64, -1])
|
||||
x = x1 + x3
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def test_conv_handler():
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
|
||||
tracer = ColoTracer()
|
||||
model = ConvModel(16, 32)
|
||||
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %conv1 : [#users=2] = call_module[target=conv1](args = (%x,), kwargs = {})
|
||||
# %add : [#users=0] = call_function[target=operator.add](args = (%conv1, 1), kwargs = {})
|
||||
# %reshape : [#users=2] = call_function[target=torch.reshape](args = (%conv1, [1, -1, 64, 1]), kwargs = {})
|
||||
# %conv2 : [#users=1] = call_module[target=conv2](args = (%reshape,), kwargs = {})
|
||||
# %reshape_1 : [#users=1] = call_function[target=torch.reshape](args = (%conv2, [4, 1, 64, -1]), kwargs = {})
|
||||
# %add_1 : [#users=1] = call_function[target=operator.add](args = (%reshape, %reshape_1), kwargs = {})
|
||||
# return add_1
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
# [x, conv1, add, reshape, conv2, reshape_1, add_1, output]
|
||||
nodes = [node for node in gm.graph.nodes]
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
strategy_map = strategies_constructor.strategy_map
|
||||
# check a tensor add with a scalar case
|
||||
conv1_strategies = strategy_map[nodes[1]]
|
||||
add_strategies = strategy_map[nodes[2]]
|
||||
add_strategies_cover_list = [strategy.input_shardings[0].sharding_sequence for strategy in add_strategies]
|
||||
for strategy in conv1_strategies:
|
||||
assert strategy.output_sharding_spec.sharding_sequence in add_strategies_cover_list
|
||||
|
||||
# check two tensors element-wise add case
|
||||
add_1_strategies = strategy_map[nodes[6]]
|
||||
assert len(add_1_strategies) == 25
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_conv_handler()
|
Reference in New Issue
Block a user