Refactored docstring to google style

This commit is contained in:
Liang Bowen
2022-03-25 13:02:39 +08:00
committed by アマデウス
parent 53b1b6e340
commit ec5086c49c
94 changed files with 3389 additions and 2982 deletions

View File

@@ -10,34 +10,40 @@ from colossalai.registry import *
def build_from_config(module, config: dict):
"""Returns an object of :class:`module` constructed from `config`.
:param module: A python or user-defined class
:type module: class
:param config: A python dict containing information used in the construction
of the return object
:type config: dict
:raises AssertionError: Raises an AssertionError if `module` is not a class
:return: An object of interest
:rtype: Object
Args:
module: A python or user-defined class
config: A python dict containing information used in the construction of the return object
Returns: An ``object`` of interest
Raises:
AssertionError: Raises an AssertionError if `module` is not a class
"""
assert inspect.isclass(module), 'module must be a class'
return module(**config)
def build_from_registry(config, registry: Registry):
"""Returns an object constructed from `config`, the type of the object
r"""Returns an object constructed from `config`, the type of the object
is specified by `registry`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.colossalai.context.Config`
:param registry: A registry specifying the type of the return object
:type registry: :class:`Registry`
:raises AssertionError: Raises an AssertionError if `registry` is not an object
of :class:`Registry` or `mod_type` in `config` is not found in `registry`
:raises Exception: Raises an Exception if an error occurred when building
from registry
:return: An object specified by `registry`
:rtype: Python object specified by `registry`
Note:
the `config` is used to construct the return object such as `LAYERS`,
`OPTIMIZERS` and other support types in `registry`. The `config` should contain
all required parameters of corresponding object. The details of support
types in `registry` and the `mod_type` in `config` could be found in
`registry <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/registry/__init__.py>`_.
Args:
config (dict or :class:`colossalai.context.colossalai.context.Config`): information
used in the construction of the return object.
registry (:class:`Registry`): A registry specifying the type of the return object
Returns: A Python object specified by `registry`
Raises:
Exception: Raises an Exception if an error occurred when building from registry
"""
config_ = config.copy() # keep the original config untouched
assert isinstance(
@@ -60,11 +66,13 @@ def build_from_registry(config, registry: Registry):
def build_layer(config):
"""Returns a layer object of :class:`nn.Module` constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.nn.Module`
:rtype: :class:`torch.nn.Module`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``LAYERS``.
Returns:
An object of :class:`torch.nn.Module`
"""
return build_from_registry(config, LAYERS)
@@ -73,11 +81,13 @@ def build_loss(config):
"""Returns a loss function object of :class:`torch.autograd.Function` constructed
from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.nn.modules.loss._Loss`
:rtype: :class:`torch.nn.modules.loss._Loss`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``LOSSES``.
Returns:
An object of :class:`torch.nn.modules.loss._Loss`
"""
return build_from_registry(config, LOSSES)
@@ -85,11 +95,13 @@ def build_loss(config):
def build_model(config):
"""Returns a model object of :class:`nn.Module` constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.nn.Module`
:rtype: :class:`torch.nn.Module`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``MODELS``.
Returns:
An object of :class:`torch.nn.Module`
"""
return build_from_registry(config, MODELS)
@@ -98,11 +110,13 @@ def build_dataset(config):
"""Returns a dataset object of :class:`torch.utils.data.Dataset` constructed
from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.utils.data.Dataset`
:rtype: :class:`torch.utils.data.Dataset`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``DATASETS``.
Returns:
An object of :class:`torch.utils.data.Dataset`
"""
return build_from_registry(config, DATASETS)
@@ -111,13 +125,14 @@ def build_optimizer(config, model):
"""Returns an optimizer object of :class:`torch.optim.Optimizer` constructed from `config`,
'model' and 'params'.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param model: A model containing parameters for the optimizer
:type model: :class:`nn.Module`
:return: An object of :class:`torch.optim.Optimizer`
:rtype: :class:`torch.optim.Optimizer`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``OPTIMIZERS``.
model (:class:`nn.Module`): A model containing parameters for the optimizer
Returns:
An object of :class:`torch.optim.Optimizer`
"""
config_ = config.copy()
config_['params'] = model.parameters()
@@ -128,15 +143,15 @@ def build_gradient_handler(config, model, optimizer):
"""Returns a gradient handler object of :class:`BaseGradientHandler` constructed from `config`,
`model` and `optimizer`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param model: A model containing parameters for the gradient handler
:type model: :class:`nn.Module`
:param optimizer: An optimizer object containing parameters for the gradient handler
:type optimizer: :class:`torch.optim.Optimizer`
:return: An object of :class:`colossalai.engine.BaseGradientHandler`
:rtype: :class:`colossalai.engine.BaseGradientHandler`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``GRADIENT_HANDLER``.
model (:class:`nn.Module`): A model containing parameters for the gradient handler
optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing parameters for the gradient handler
Returns:
An object of :class:`colossalai.engine.BaseGradientHandler`
"""
config_ = config.copy()
config_['model'] = model
@@ -147,13 +162,13 @@ def build_gradient_handler(config, model, optimizer):
def build_hooks(config, trainer):
"""Returns a hook object of :class:`BaseHook` constructed from `config` and `trainer`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param trainer: A :class:`Trainer` object containing parameters for the hook
:type trainer: :class:`Trainer`
:return: An object of :class:`colossalai.trainer.hooks.BaseHook`
:rtype: :class:`colossalai.trainer.hooks.BaseHook`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``HOOKS``.
Returns:
An object of :class:`colossalai.trainer.hooks.BaseHook`
"""
config_ = config.copy()
config_['trainer'] = trainer
@@ -163,11 +178,13 @@ def build_hooks(config, trainer):
def build_ophooks(config):
"""Returns a hook object of :class:`BaseOpHook` constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`colossalai.trainer.hooks.BaseOpHook`
:rtype: :class:`colossalai.trainer.hooks.BaseOpHook`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``OPHOOKS``.
Returns:
An object of :class:`colossalai.trainer.hooks.BaseOpHook`
"""
config_ = config.copy()
return build_from_registry(config_, OPHOOKS)
@@ -177,11 +194,13 @@ def build_transform(config):
"""Returns a transformation object of :class:`torchvision.transforms` constructed
from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torchvision.transforms`
:rtype: :class:`torchvision.transforms`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``TRANSFORMS``.
Returns:
An object of :class:`torchvision.transforms`
"""
return build_from_registry(config, TRANSFORMS)
@@ -190,14 +209,15 @@ def build_data_sampler(config, dataset):
"""Returns a data sampler object of :class:`colossalai.nn.data.sampler.BaseSampler`
constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param dataset: An object of :class:`torch.utils.data.Dataset` containing information
used in the construction of the return object
:type dataset: :class:`torch.utils.data.Dataset`
:return: An object of :class:`colossalai.utils.data_sampler.BaseSampler`
:rtype: :class:`colossalai.utils.data_sampler.BaseSampler`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``DATA_SAMPLERS``.
dataset (:class:`torch.utils.data.Dataset`): An object of
:class:`torch.utils.data.Dataset` containing information
used in the construction of the return object
Returns:
An object of :class:`colossalai.utils.data_sampler.BaseSampler`
"""
config_ = config.copy()
config_['dataset'] = dataset
@@ -208,14 +228,15 @@ def build_lr_scheduler(config, optimizer):
"""Returns a learning rate scheduler object of :class:`torch.optim.lr_scheduler`
constructed from `config`, `optimizer`, `total_steps` and `num_steps_per_epoch`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param optimizer: An optimizer object containing parameters for the learning rate
scheduler
:type optimizer: :class:`torch.optim.Optimizer`
:return: An object of :class:`torch.optim.lr_scheduler`
:rtype: :class:`torch.optim.lr_scheduler`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``lr_schedule``.
optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing
parameters for the learning rate scheduler.
Returns:
An object of :class:`torch.optim.lr_scheduler`
"""
config_ = config.copy()
config_['optimizer'] = optimizer
@@ -225,10 +246,12 @@ def build_lr_scheduler(config, optimizer):
def build_schedule(config):
"""Returns a schedule of :class:`colossalai.engine.schedule.BaseSchedule`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`colossalai.engine.schedule.BaseSchedule`
:rtype: :class:`colossalai.engine.schedule.BaseSchedule`
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``Schedule``.
Returns:
An object of :class:`colossalai.engine.schedule.BaseSchedule`
"""
return build_from_registry(config, SCHEDULE)

View File

@@ -13,14 +13,13 @@ def _binary_partition(weights, st, ed):
"""Returns the binary partition position of `weights`, given the start
position `st` and the end position `ed`.
:param weights: A python list to be binary partitioned
:type weights: list
:param st: the start position of the binary partition
:type st: int
:param ed: the end postition of the binary partition
:type ed: int
:return: the binary partition position of `weights`
:rtype: int
Args:
weights (list): A python list to be binary partitioned
st (int): the start position of the binary partition
ed (int): the end position of the binary partition
Returns:
int: the binary partition position of `weights`
"""
w_sum = weights[ed - 1]
prefix = 0
@@ -176,16 +175,13 @@ def build_pipeline_model_from_cfg(config, num_chunks: int = 1, partition_method:
...
)
:param config: Configuration of the model
:type config: dict
:param num_chunks: The number of chunks you want to have on the current stage. This value should be 1
in most cases unless you are using virutal pipeline parallelism.
:type num_chunks: int, optional
:param partition_method: This parameter determines how you want to split your model layers into stages,
you can set it as 'layer' or 'parameter'
:type partition_method: str, optional
:param verbose: Whether to print the logs
:type verbose: bool, optional
Args:
config (dict): Configuration of the model.
num_chunks (int, optional): The number of chunks you want to have on the current stage.
This value should be 1 in most cases unless you are using virtual pipeline parallelism.
partition_method (str, optional): This parameter determines how you want to split your model
layers into stages, you can set it as 'layer' or 'parameter'.
verbose (bool, optional): Whether to print the logs.
"""
ori_model = build_model(config)
layers = ori_model.layers_cfg
@@ -240,13 +236,11 @@ def build_pipeline_model(layers: nn.Sequential, num_chunks: int = 1, verbose: bo
"""An intializer to split the model into different stages for pipeline parallelism.
Note that `layer` must be `torch.nn.Sequential`.
:param layers: Layers of model
:type layers: `torch.nn.Sequential`
:param num_chunks: The number of chunks you want to have on the current stage. This value should be 1
in most cases unless you are using virutal pipeline parallelism.
:type num_chunks: int, optional
:param verbose: Whether to print the logs
:type verbose: bool, optional
Args:
layers (`torch.nn.Sequential`): Layers of model
num_chunks: The number of chunks you want to have on the current stage. This value should be 1
in most cases unless you are using virtual pipeline parallelism.
verbose (bool, optional): Whether to print the logs.
"""
pipeline_parallel_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)