mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-25 19:55:03 +00:00
Refactored docstring to google style
This commit is contained in:
@@ -19,12 +19,12 @@ TensorShape = Union[torch.Size, List[int], Tuple[int]]
|
||||
def _get_tensor_shape(tensor_shape: TensorShape, chunk_tensor: bool = False) -> Tuple[TensorShape, bool]:
|
||||
"""get the exact tensor shape when communicating and return whether the tensor is a chunk
|
||||
|
||||
:param tensor_shape: shape of tensor
|
||||
:type tensor_shape: TensorShape
|
||||
:param chunk_tensor: whether to chunk tensor, defaults to False
|
||||
:type chunk_tensor: bool, optional
|
||||
:return: exact tensor shape, whether to chunk tensor
|
||||
:rtype: Tuple[Union[torch.Size, List[int], Tuple[int]], bool]
|
||||
Args:
|
||||
tensor_shape (:class:`torch.Size`): shape of tensor
|
||||
chunk_tensor (bool, optional): whether to chunk tensor, defaults to False
|
||||
|
||||
Returns:
|
||||
Tuple[Union[torch.Size, List[int], Tuple[int]], bool]: exact tensor shape, whether to chunk tensor
|
||||
"""
|
||||
if chunk_tensor:
|
||||
tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1)
|
||||
@@ -134,14 +134,14 @@ def _communicate(tensor_send_next=None,
|
||||
|
||||
|
||||
def recv_forward(input_tensor_shape, prev_rank=None, dtype=torch.float, scatter_gather_tensors=False):
|
||||
"""Receives the input tensor from the previous member in pipeline.
|
||||
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
|
||||
|
||||
:param input_tensor_shape: The shape of the tensor to be recieved
|
||||
:param prev_rank: The rank of the source of the tensor
|
||||
:type input_tensor_shape: torch.Size
|
||||
:type prev_rank: int, optional
|
||||
:return: The input tensor in forward step
|
||||
:rtype: :class:`torch.Tensor`
|
||||
Args:
|
||||
input_tensor_shape (:class:`torch.Size`): The shape of the tensor to be received.
|
||||
prev_rank (int, optional): The rank of the source of the tensor.
|
||||
|
||||
Returns:
|
||||
:class:`torch.Tensor`: The input tensor.
|
||||
"""
|
||||
if gpc.is_pipeline_first_stage():
|
||||
input_tensor = None
|
||||
@@ -155,14 +155,14 @@ def recv_forward(input_tensor_shape, prev_rank=None, dtype=torch.float, scatter_
|
||||
|
||||
|
||||
def recv_backward(output_grad_shape, next_rank=None, dtype=torch.float, scatter_gather_tensors=False):
|
||||
"""Receives the grad tensor from the next member in pipeline.
|
||||
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage.
|
||||
|
||||
:param output_grad_shape: The shape of the tensor to be recieved
|
||||
:param next_rank: The rank of the source of the tensor
|
||||
:type output_grad_shape: torch.Size
|
||||
:type next_rank: int, optional
|
||||
:return: The grad of output tensor in forward step
|
||||
:rtype: :class:`torch.Tensor`
|
||||
Args:
|
||||
output_grad_shape (:class:`torch.Size`): The shape of the tensor to be received.
|
||||
next_rank (int, optional): The rank of the source of the tensor.
|
||||
|
||||
Returns:
|
||||
:class:`torch.Tensor`: The input gradient tensor.
|
||||
"""
|
||||
if gpc.is_pipeline_last_stage():
|
||||
output_tensor_grad = None
|
||||
@@ -176,12 +176,11 @@ def recv_backward(output_grad_shape, next_rank=None, dtype=torch.float, scatter_
|
||||
|
||||
|
||||
def send_forward(output_tensor, next_rank=None, scatter_gather_tensors=False):
|
||||
"""Sends the input tensor to the next member in pipeline.
|
||||
"""Sends the input tensor to the next stage in pipeline.
|
||||
|
||||
:param output_tensor: Tensor to be sent
|
||||
:param next_rank: The rank of the recipient of the tensor
|
||||
:type output_tensor: :class:`torch.Tensor`
|
||||
:type next_rank: int, optional
|
||||
Args:
|
||||
output_tensor (:class:`torch.Tensor`): Tensor to be sent.
|
||||
next_rank (int, optional): The rank of the recipient of the tensor.
|
||||
"""
|
||||
if not gpc.is_pipeline_last_stage():
|
||||
_communicate(tensor_send_next=output_tensor,
|
||||
@@ -190,12 +189,11 @@ def send_forward(output_tensor, next_rank=None, scatter_gather_tensors=False):
|
||||
|
||||
|
||||
def send_backward(input_tensor_grad, prev_rank=None, scatter_gather_tensors=False):
|
||||
"""Sends the grad tensor to the previous member in pipeline.
|
||||
"""Sends the gradient tensor to the previous stage in pipeline.
|
||||
|
||||
:param input_tensor_grad: Tensor to be sent
|
||||
:param prev_rank: The rank of the recipient of the tensor
|
||||
:type input_tensor_grad: :class:`torch.Tensor`
|
||||
:type prev_rank: int, optional
|
||||
Args:
|
||||
input_tensor_grad (:class:`torch.Tensor`): Tensor to be sent
|
||||
prev_rank (int, optional): The rank of the recipient of the tensor
|
||||
"""
|
||||
if not gpc.is_pipeline_first_stage():
|
||||
_communicate(tensor_send_prev=input_tensor_grad,
|
||||
@@ -210,15 +208,15 @@ def send_forward_recv_backward(output_tensor,
|
||||
dtype=torch.float,
|
||||
scatter_gather_tensors=False):
|
||||
"""Batched communication operation. Sends the input tensor to the
|
||||
next member in pipeline, while recieves the grad tensor from the
|
||||
next member in pipeline.
|
||||
next stage in pipeline, while receives the gradient tensor from the
|
||||
next stage in pipeline as the input gradient tensor of this stage.
|
||||
|
||||
:param output_tensor: Tensor to be sent
|
||||
:param output_grad_shape: The shape of the tensor to be recieved
|
||||
:type output_tensor: :class:`torch.Tensor`
|
||||
:type output_grad_shape: :class:`torch.Size`
|
||||
:return: The grad of output tensor in forward step
|
||||
:rtype: :class:`torch.Tensor`
|
||||
Args:
|
||||
output_tensor (:class:`torch.Tensor`): Tensor to be sent.
|
||||
output_grad_shape (:class:`torch.Size`): The shape of the tensor to be received.
|
||||
|
||||
Returns:
|
||||
:class:`torch.Tensor`: The input gradient tensor.
|
||||
"""
|
||||
if gpc.is_pipeline_last_stage():
|
||||
output_tensor_grad = None
|
||||
@@ -238,16 +236,16 @@ def send_backward_recv_forward(input_tensor_grad,
|
||||
prev_rank=None,
|
||||
dtype=torch.float,
|
||||
scatter_gather_tensors=False):
|
||||
"""Batched communication operation. Sends the grad tensor to the
|
||||
previous member in pipeline, while recieves the input tensor from the
|
||||
previous member in pipeline.
|
||||
"""Batched communication operation. Sends the gradient tensor to the
|
||||
previous stage in pipeline, while receives the output tensor from the
|
||||
previous stage in pipeline as the input of this stage.
|
||||
|
||||
:param input_tensor_grad: Tensor to be sent
|
||||
:param input_tensor_shape: The shape of the tensor to be recieved
|
||||
:type input_tensor_grad: :class:`torch.Tensor`
|
||||
:type input_tensor_shape: :class:`torch.Size`
|
||||
:return: The input tensor in forward step
|
||||
:rtype: :class:`torch.Tensor`
|
||||
Args:
|
||||
input_tensor_grad (:class:`torch.Tensor`): Tensor to be sent.
|
||||
input_tensor_shape (:class:`torch.Size`): The shape of the tensor to be received.
|
||||
|
||||
Returns:
|
||||
:class:`torch.Tensor`: The input tensor.
|
||||
"""
|
||||
if gpc.is_pipeline_first_stage():
|
||||
input_tensor = None
|
||||
@@ -269,15 +267,15 @@ def send_forward_recv_forward(output_tensor,
|
||||
dtype=torch.float,
|
||||
scatter_gather_tensors=False):
|
||||
"""Batched communication operation. Sends the input tensor to the
|
||||
next member in pipeline, while recieves the input tensor from the
|
||||
previous member in pipeline.
|
||||
next stage in pipeline, while receives the output tensor from the
|
||||
previous stage in pipeline as the input of this stage.
|
||||
|
||||
:param output_tensor: Tensor to be sent
|
||||
:param input_tensor_shape: The shape of the tensor to be recieved
|
||||
:type output_tensor: :class:`torch.Tensor`
|
||||
:type input_tensor_shape: :class:`torch.Size`
|
||||
:return: The input tensor in forward step
|
||||
:rtype: :class:`torch.Tensor`
|
||||
Args:
|
||||
output_tensor (:class:`torch.Tensor`): Tensor to be sent.
|
||||
input_tensor_shape (:class:`torch.Size`): The shape of the tensor to be received.
|
||||
|
||||
Returns:
|
||||
:class:`torch.Tensor`: The input tensor.
|
||||
"""
|
||||
input_tensor, _ = _communicate(tensor_send_next=output_tensor,
|
||||
recv_prev=recv_prev,
|
||||
@@ -296,16 +294,16 @@ def send_backward_recv_backward(input_tensor_grad,
|
||||
next_rank=None,
|
||||
dtype=torch.float,
|
||||
scatter_gather_tensors=False):
|
||||
"""Batched communication operation. Sends the grad tensor to the
|
||||
previous member in pipeline, while recieves the grad tensor from the
|
||||
next member in pipeline.
|
||||
"""Batched communication operation. Sends the gradient tensor to the
|
||||
previous stage in pipeline, while receives the gradient tensor from the
|
||||
next member in pipeline as the input of this stage.
|
||||
|
||||
:param input_tensor_grad: Tensor to be sent
|
||||
:param output_grad_shape: The shape of the tensor to be recieved
|
||||
:type input_tensor_grad: :class:`torch.Tensor`
|
||||
:type output_grad_shape: :class:`torch.Size`
|
||||
:return: The grad of output tensor in forward step
|
||||
:rtype: :class:`torch.Tensor`
|
||||
Args:
|
||||
input_tensor_grad (:class:`torch.Tensor`): Tensor to be sent.
|
||||
output_grad_shape (:class:`torch.Size`): The shape of the tensor to be received.
|
||||
|
||||
Returns:
|
||||
:class:`torch.Tensor`: The input gradient tensor.
|
||||
"""
|
||||
_, output_tensor_grad = _communicate(tensor_send_prev=input_tensor_grad,
|
||||
recv_next=recv_next,
|
||||
@@ -327,20 +325,18 @@ def send_forward_backward_recv_forward_backward(output_tensor,
|
||||
next_rank=None,
|
||||
dtype=torch.float,
|
||||
scatter_gather_tensors=False):
|
||||
"""Batched communication operation. Sends the input tensor to the next and
|
||||
the grad tensor to the previous, while recieves the grad tensor from the
|
||||
next and the input tensor from the previous.
|
||||
"""Batched communication operation. Sends the input tensor to the next stage in pipeline and
|
||||
the gradient tensor to the previous stage, while receives the input gradient tensor from the
|
||||
next stage and the input tensor from the previous stage.
|
||||
|
||||
:param output_tensor: Tensor sent to the next
|
||||
:param input_tensor_grad: Tensor sent to the previous
|
||||
:param input_tensor_shape: The shape of the tensor recieved from the previous
|
||||
:param output_grad_shape: The shape of the tensor recieved from the next
|
||||
:type output_tensor: :class:`torch.Tensor`
|
||||
:type input_tensor_grad: :class:`torch.Tensor`
|
||||
:type input_tensor_shape: :class:`torch.Size`
|
||||
:type output_grad_shape: :class:`torch.Size`
|
||||
:return: (the input tensor in forward step, the grad of output tensor in forward step)
|
||||
:rtype: (Tensor, Tensor)
|
||||
Args:
|
||||
output_tensor (:class:`torch.Tensor`): Tensor sent to the next.
|
||||
input_tensor_grad (:class:`torch.Tensor`): Tensor sent to the previous.
|
||||
input_tensor_shape (:class:`torch.Size`): The shape of the tensor received from the previous.
|
||||
output_grad_shape (:class:`torch.Size`): The shape of the tensor received from the next.
|
||||
|
||||
Returns:
|
||||
Tuple(Tensor, Tensor): (the input tensor, the input gradient tensor)
|
||||
"""
|
||||
input_tensor, output_tensor_grad = _communicate(
|
||||
tensor_send_next=output_tensor,
|
||||
|
Reference in New Issue
Block a user