mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 01:06:00 +00:00
Refactored docstring to google style
This commit is contained in:
@@ -8,16 +8,13 @@ from .delayed import WarmupScheduler
|
||||
class PolynomialLR(_LRScheduler):
|
||||
"""Polynomial learning rate scheduler.
|
||||
|
||||
:param optimizer: Wrapped optimizer
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param total_steps: Number of total training steps
|
||||
:type total_steps: int
|
||||
:param end_lr: Minimum learning rate, defaults to 0.0001
|
||||
:type end_lr: float, optional
|
||||
:param power: The power of polynomial, defaults to 1.0
|
||||
:type power: float, optional
|
||||
:param last_epoch: The index of last epoch, defaults to -1
|
||||
:type last_epoch: int, optional
|
||||
Args:
|
||||
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
||||
total_steps (int): Number of total training steps.
|
||||
end_lr (float, optional): Minimum learning rate, defaults to 0.0001.
|
||||
power (float, optional): The power of polynomial, defaults to 1.0.
|
||||
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
||||
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, total_steps: int, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1,
|
||||
@@ -44,18 +41,14 @@ class PolynomialLR(_LRScheduler):
|
||||
class PolynomialWarmupLR(WarmupScheduler):
|
||||
"""Polynomial learning rate scheduler with warmup.
|
||||
|
||||
:param optimizer: Wrapped optimizer
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param total_steps: Number of total training steps
|
||||
:type total_steps: int
|
||||
:param warmup_steps: Number of warmup steps, defaults to 0
|
||||
:type warmup_steps: int, optional
|
||||
:param end_lr: Minimum learning rate, defaults to 0.0001
|
||||
:type end_lr: float, optional
|
||||
:param power: The power of polynomial, defaults to 1.0
|
||||
:type power: float, optional
|
||||
:param last_epoch: The index of last epoch, defaults to -1
|
||||
:type last_epoch: int, optional
|
||||
Args:
|
||||
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
||||
total_steps (int): Number of total training steps.
|
||||
warmup_steps (int, optional): Number of warmup steps, defaults to 0.
|
||||
end_lr (float, optional): Minimum learning rate, defaults to 0.0001.
|
||||
power (float, optional): The power of polynomial, defaults to 1.0.
|
||||
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
||||
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, end_lr: float = 0.0001, power: float = 1.0,
|
||||
|
Reference in New Issue
Block a user