Refactored docstring to google style

This commit is contained in:
Liang Bowen
2022-03-25 13:02:39 +08:00
committed by アマデウス
parent 53b1b6e340
commit ec5086c49c
94 changed files with 3389 additions and 2982 deletions

View File

@@ -8,16 +8,13 @@ from .delayed import WarmupScheduler
class PolynomialLR(_LRScheduler):
"""Polynomial learning rate scheduler.
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
:type total_steps: int
:param end_lr: Minimum learning rate, defaults to 0.0001
:type end_lr: float, optional
:param power: The power of polynomial, defaults to 1.0
:type power: float, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
end_lr (float, optional): Minimum learning rate, defaults to 0.0001.
power (float, optional): The power of polynomial, defaults to 1.0.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1,
@@ -44,18 +41,14 @@ class PolynomialLR(_LRScheduler):
class PolynomialWarmupLR(WarmupScheduler):
"""Polynomial learning rate scheduler with warmup.
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
:type total_steps: int
:param warmup_steps: Number of warmup steps, defaults to 0
:type warmup_steps: int, optional
:param end_lr: Minimum learning rate, defaults to 0.0001
:type end_lr: float, optional
:param power: The power of polynomial, defaults to 1.0
:type power: float, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
warmup_steps (int, optional): Number of warmup steps, defaults to 0.
end_lr (float, optional): Minimum learning rate, defaults to 0.0001.
power (float, optional): The power of polynomial, defaults to 1.0.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, end_lr: float = 0.0001, power: float = 1.0,