Refactored docstring to google style

This commit is contained in:
Liang Bowen
2022-03-25 13:02:39 +08:00
committed by アマデウス
parent 53b1b6e340
commit ec5086c49c
94 changed files with 3389 additions and 2982 deletions

View File

@@ -11,16 +11,13 @@ class LambdaLR(_LambdaLR):
"""Sets the learning rate of each parameter group to the initial lr
times a given function. When last_epoch=-1, sets initial lr as lr.
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
:type total_steps: int
:param lr_lambda: A function which computes a multiplicative
factor given an integer parameter epoch, or a list of such
functions, one for each group in optimizer.param_groups, defaults to None
:type lr_lambda: function or list, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
lr_lambda (Union[``function``, ``list[function]``]): A function which computes a multiplicative
factor given an integer parameter epoch, or a list of such functions,
one for each group in optimizer.param_groups, defaults to None.
last_epoch (int, optional): The index of last epoch, defaults to -1.
"""
def __init__(self, optimizer, total_steps, lr_lambda=None, last_epoch: int = -1) -> None:
@@ -30,18 +27,15 @@ class LambdaLR(_LambdaLR):
@LR_SCHEDULERS.register_module
class MultiplicativeLR(_MultiplicativeLR):
"""Multiply the learning rate of each parameter group by the factor given
in the specified function. When last_epoch=-1, sets initial lr as lr
in the specified function. When last_epoch=-1, sets initial lr as lr.
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
:type total_steps: int
:param lr_lambda: A function which computes a multiplicative
factor given an integer parameter epoch, or a list of such
functions, one for each group in optimizer.param_groups, defaults to None
:type lr_lambda: function or list, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
lr_lambda (Union[``function``, ``list[function]``]): A function which computes a multiplicative
factor given an integer parameter epoch, or a list of such functions,
one for each group in optimizer.param_groups, defaults to None.
last_epoch (int, optional): The index of last epoch, defaults to -1.
"""
def __init__(self, optimizer, total_steps, lr_lambda=None, last_epoch: int = -1) -> None:
@@ -53,18 +47,14 @@ class StepLR(_StepLR):
"""Decays the learning rate of each parameter group by gamma every
step_size epochs. Notice that such decay can happen simultaneously with
other changes to the learning rate from outside this scheduler. When
last_epoch=-1, sets initial lr as lr
last_epoch=-1, sets initial lr as lr.
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
:type total_steps: int
:param step_size: Period of learning rate decay, defaults to 1
:type step_size: int, optional
:param gamma: Multiplicative factor of learning rate decay, defaults to 0.1
:type gamma: float, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
step_size (int, optional): Period of learning rate decay, defaults to 1.
gamma (float, optional): Multiplicative factor of learning rate decay, defaults to 0.1.
last_epoch (int, optional): The index of last epoch, defaults to -1.
"""
def __init__(self, optimizer, total_steps, step_size: int = 1, gamma: float = 0.1, last_epoch: int = -1) -> None:
@@ -77,14 +67,11 @@ class ExponentialLR(_ExponentialLR):
"""Decays the learning rate of each parameter group by gamma every epoch.
When last_epoch=-1, sets initial lr as lr
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
:type total_steps: int
:param gamma: Multiplicative factor of learning rate decay, defaults to 1.0
:type gamma: float, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
Args:
optimizer (Union[:class:`torch.optim.Optimizer`, :class:`colossalai.nn.optimizer`]): Wrapped optimizer.
total_steps (int): Number of total training steps.
gamma (float, optional): Multiplicative factor of learning rate decay, defaults to 1.0.
last_epoch (int, optional): The index of last epoch, defaults to -1.
"""
def __init__(self, optimizer, total_steps, gamma: float = 1.0,