mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-21 17:40:33 +00:00
Refactored docstring to google style
This commit is contained in:
@@ -17,18 +17,46 @@ from colossalai.trainer.hooks import BaseHook
|
||||
|
||||
|
||||
class Trainer:
|
||||
"""This a class tending for easy deployments of users' training and evaluation instead of
|
||||
r"""This is a class tending for easy deployments of users' training and evaluation instead of
|
||||
writing their own scripts. It is similar with ``ignite.engine`` and ``keras.engine``, but is
|
||||
called `Trainer`.
|
||||
|
||||
:param engine: Engine responsible for the process function
|
||||
:type engine: :class:`Engine`
|
||||
:param schedule: Schedule responsible for forward and backward steps
|
||||
:type schedule: :class:`BaseSchedule`, optional
|
||||
:param timer: Timer used to monitor the whole training
|
||||
:type timer: :class:`MultiTimer`, optional
|
||||
:param logger: Logger used to record the whole training
|
||||
:type logger: :class:`colossalai.logging.DistributedLogger`, optional
|
||||
Args:
|
||||
engine (:class:`Engine`): Engine responsible for the process function.
|
||||
schedule (:class:`BaseSchedule`, optional): Schedule responsible for forward and backward steps.
|
||||
timer (:class:`MultiTimer`, optional): Timer used to monitor the whole training.
|
||||
logger (:class:`colossalai.logging.DistributedLogger`, optional): Logger used to record the whole training log.
|
||||
|
||||
Note:
|
||||
when `schedule` is None, the ``NonPipelineSchedule`` would be used. If you would like to use pipeline,
|
||||
you should choose ``PipelineSchedule`` or ``InterleavedPipelineSchedule`` for the `schedule`
|
||||
|
||||
Examples:
|
||||
>>> # define model, criterion, optimizer, lr_scheduler, train_dataloader for your training
|
||||
>>> model = ...
|
||||
>>> criterion = ...
|
||||
>>> optimizer = ...
|
||||
>>> train_dataloader = ...
|
||||
>>> # Initialize your engine, train_dataloader, test_dataloader, lr_scheduler
|
||||
>>> engine, train_dataloader, _, _ = colossalai.initialize(model, optimizer, criterion)
|
||||
>>> # Beginning training progress
|
||||
>>> timier = ...
|
||||
>>> logger = ...
|
||||
>>> trainer = Trainer(engine=engine, logger=logger, schedule=schedule, timer=timier)
|
||||
>>> # add hooks you would like to use here.
|
||||
>>> hook_list = []
|
||||
>>> trainer.fit(
|
||||
>>> train_dataloader=train_dataloader,
|
||||
>>> epochs=gpc.config.NUM_EPOCHS,
|
||||
>>> test_interval=1,
|
||||
>>> hooks=hook_list,
|
||||
>>> display_progress=True,
|
||||
>>> return_output_label=False
|
||||
>>> )
|
||||
|
||||
More examples and details could be found in
|
||||
`Training with engine and trainer <https://www.colossalai.org/docs/basics/engine_trainer>`_
|
||||
and `ColossalAI-Examples <https://github.com/hpcaitech/ColossalAI-Examples/tree/main>`_.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
@@ -108,20 +136,19 @@ class Trainer:
|
||||
def _set_current_step(self, epoch: int):
|
||||
"""Sets current step number.
|
||||
|
||||
:param epoch: Step number to be set
|
||||
:type epoch: int
|
||||
Args:
|
||||
epoch (int): Step number to be set.
|
||||
"""
|
||||
self._cur_step = epoch * self._steps_per_epoch
|
||||
|
||||
def _call_timer(self, action: str, item: str, *args, **kwargs) -> None:
|
||||
"""Call timer funciton with a given timer name.
|
||||
|
||||
:param action: Function to be called on timer
|
||||
:type action: str
|
||||
:param item: Name of the timer
|
||||
:type item: str
|
||||
:param args: args used for action function
|
||||
:param kwargs: kwargs used for action function
|
||||
Args:
|
||||
action (str): Function to be called on timer.
|
||||
item (str): Name of the timer.
|
||||
args (list): args used for action function.
|
||||
kwargs (dict): kwargs used for action function.
|
||||
"""
|
||||
|
||||
if self._timer is not None:
|
||||
@@ -134,10 +161,9 @@ class Trainer:
|
||||
def _call_hooks(self, func, output=None):
|
||||
"""Calls specific hooks in the current time point.
|
||||
|
||||
:param func: A string represents the time point
|
||||
:param output: Output of the model after running a iteration or None in any other time points
|
||||
:type func: str
|
||||
:type output: optional
|
||||
Args:
|
||||
func (str): A string represents the time point.
|
||||
output (Any, optional): Output of the model after running an iteration or None in any other time points.
|
||||
"""
|
||||
# Only after iter hook will receive output
|
||||
for hook in self.hooks:
|
||||
@@ -273,25 +299,17 @@ class Trainer:
|
||||
display_progress: bool = False,
|
||||
return_output_label: bool = True,
|
||||
):
|
||||
"""Trains the model to fit training data.
|
||||
r"""Trains the model to fit training data.
|
||||
|
||||
:param train_dataloader: DataLoader in training
|
||||
:param epochs: Maximum number of epoches
|
||||
:param max_steps: Maximum number of running iterations
|
||||
:param test_dataloader: DataLoader in testing
|
||||
:param test_interval: Interval of testing
|
||||
:param hooks: A list of hooks used in training
|
||||
:param display_progress: If True, the training progress will be printed
|
||||
:param return_output_label: If True, the output of model and the label will be returned
|
||||
|
||||
:type train_dataloader: DataLoader
|
||||
:type epochs: int
|
||||
:type max_steps: int, optional
|
||||
:type test_dataloader: DataLoader, optional
|
||||
:type test_interval: int, optional
|
||||
:type hooks: list, optional
|
||||
:type display_progress: bool, optional
|
||||
:type return_output_label: bool, optional
|
||||
Args:
|
||||
train_dataloader (:class:`torch.utils.data.DataLoader`): DataLoader for training.
|
||||
epochs (int): Maximum number of epochs.
|
||||
max_steps (int, optional): Maximum number of running iterations.
|
||||
test_dataloader (:class:`torch.utils.data.DataLoader`, optional): DataLoader for validation.
|
||||
test_interval (int, optional): Interval of validation
|
||||
hooks (list[`BaseHook <https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/trainer/hooks>`_],
|
||||
optional): A list of hooks used in training.
|
||||
display_progress (bool, optional): If True, a progress bar will be displayed.
|
||||
"""
|
||||
|
||||
# set epochs and steps, consider gradient accumulation
|
||||
@@ -374,15 +392,12 @@ class Trainer:
|
||||
):
|
||||
"""Evaluates the model with testing data.
|
||||
|
||||
:param test_dataloader: DataLoader in testing
|
||||
:param hooks: A list of hooks used in evaluation
|
||||
:param display_progress: If True, the evaluation progress will be printed
|
||||
:param return_output_label: If True, the output of model and the label will be returned
|
||||
|
||||
:type test_dataloader: DataLoader
|
||||
:type hooks: list, optional
|
||||
:type display_progress: bool, optional
|
||||
:type return_output_label: bool
|
||||
Args:
|
||||
test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing.
|
||||
hooks (list, optional): A list of hooks used in evaluation. Defaults to None.
|
||||
display_progress (bool, optional): If True, the evaluation progress will be printed. Defaults to False.
|
||||
return_output_label (bool, optional): If True, the output of model and the label
|
||||
will be returned. Defaults to True.
|
||||
"""
|
||||
# set display
|
||||
display_progress = self._should_display_progress(display_progress)
|
||||
@@ -418,10 +433,11 @@ class Trainer:
|
||||
def predict(self, data: Union[Tensor, List[Tensor]]):
|
||||
"""Uses trained model to make a prediction for a tensor or a tensor list.
|
||||
|
||||
:param data: Data as the input
|
||||
:type data: Union[Tensor, List[Tensor]
|
||||
:return: The output of model as the prediction
|
||||
:rtype: Tensor
|
||||
Args:
|
||||
data (Union[:class:`torch.tensor`, List[:class:`torch.tensor`]]): Data as the input.
|
||||
|
||||
Returns:
|
||||
:class:`torch.tensor`: The output of model as the prediction
|
||||
"""
|
||||
# predict without labels
|
||||
if isinstance(data, (list, tuple)):
|
||||
|
@@ -40,14 +40,11 @@ class BaseHook(ABC):
|
||||
def after_train_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor):
|
||||
"""Actions after running a training iteration.
|
||||
|
||||
:param trainer: Trainer which is using this hook
|
||||
:type trainer: :class:`Trainer`
|
||||
:param output: Output of the model
|
||||
:type output: torch.Tensor
|
||||
:param label: Labels of the input data
|
||||
:type label: torch.Tensor
|
||||
:param loss: Loss between the output and input data
|
||||
:type loss: torch.Tensor
|
||||
Args:
|
||||
trainer (:class:`Trainer`): Trainer which is using this hook.
|
||||
output (:class:`torch.Tensor`): Output of the model.
|
||||
label (:class:`torch.Tensor`): Labels of the input data.
|
||||
loss (:class:`torch.Tensor`): Loss between the output and input data.
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -89,24 +86,21 @@ class BaseHook(ABC):
|
||||
def after_test_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor):
|
||||
"""Actions after running a testing iteration.
|
||||
|
||||
:param trainer: Trainer which is using this hook
|
||||
:type trainer: :class:`Trainer`
|
||||
:param output: Output of the model
|
||||
:type output: Tensor
|
||||
:param label: Labels of the input data
|
||||
:type label: Tensor
|
||||
:param loss: Loss between the output and input data
|
||||
:type loss: Tensor
|
||||
Args:
|
||||
trainer (:class:`Trainer`): Trainer which is using this hook
|
||||
output (:class:`torch.Tensor`): Output of the model
|
||||
label (:class:`torch.Tensor`): Labels of the input data
|
||||
loss (:class:`torch.Tensor`): Loss between the output and input data
|
||||
"""
|
||||
pass
|
||||
|
||||
def init_runner_states(self, trainer, key, val):
|
||||
"""Initializes trainer's state.
|
||||
|
||||
:param trainer: Trainer which is using this hook
|
||||
:type trainer: :class:`Trainer`
|
||||
:param key: Key of reseting state
|
||||
:param val: Value of reseting state
|
||||
Args:
|
||||
trainer (:class:`Trainer`): Trainer which is using this hook
|
||||
key: Key of state to be reset
|
||||
val: Value of state to be reset
|
||||
"""
|
||||
if key not in trainer.states:
|
||||
trainer.states[key] = val
|
||||
|
@@ -16,14 +16,13 @@ from ._lr_scheduler_hook import LRSchedulerHook
|
||||
class SaveCheckpointHook(BaseHook):
|
||||
"""Saves the model by interval in training process.
|
||||
|
||||
:param interval: Saving interval, defaults to 1
|
||||
:type interval: int, optional
|
||||
:param checkpoint_dir: Directory of saving checkpoint, defaults to None
|
||||
:type checkpoint_dir: str, optional
|
||||
:param suffix: Saving suffix of the file, defaults to ''
|
||||
:type suffix: str, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
interval (int, optional): Saving interval, defaults to 1.
|
||||
checkpoint_dir (str, optional): Directory of saving checkpoint, defaults to None.
|
||||
suffix (str, optional): Saving suffix of the file, defaults to ''.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@@ -71,18 +70,17 @@ class SaveCheckpointHook(BaseHook):
|
||||
class LoadCheckpointHook(BaseHook):
|
||||
"""Loads the model before training process.
|
||||
|
||||
:param checkpoint_dir: Directory of saving checkpoint, defaults to None
|
||||
:type checkpoint_dir: str, optional
|
||||
:param epoch: Epoch number to be set, defaults to -1
|
||||
:type epoch: str, optional
|
||||
:param finetune: Whether allows to load a part of the model, defaults to False
|
||||
:type finetune: bool, optional
|
||||
:param strict: Whether loads a model that has the same shape of parameters, defaults to False
|
||||
:type strict: bool, optional
|
||||
:param suffix: Suffic, defaults to ''
|
||||
:type suffix: str, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 0
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
checkpoint_dir (str, optional): Directory of saving checkpoint, defaults to None.
|
||||
epoch (str, optional): Loading checkpoint of setting epoch numbers, defaults to -1.
|
||||
Epoch equals to -1 means choosing the latest checkpoint.
|
||||
finetune (bool, optional): Whether allows to load a part of the model, defaults to False.
|
||||
strict (bool, optional): Whether to strictly enforce that the keys in :attr:`state_dict` of the checkpoint
|
||||
match the names of parameters and buffers in model, defaults to False.
|
||||
suffix (str, optional): Suffix of checkpoint file path, defaults to ''.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
||||
defaults to 0. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@@ -25,13 +25,14 @@ def _format_number(val, prec=5):
|
||||
|
||||
|
||||
class LogByEpochHook(BaseHook):
|
||||
"""Hook to log by epoch
|
||||
"""Hook to log by epoch.
|
||||
|
||||
:param logger: Logger for the log
|
||||
:param interval: Recording interval, defaults to 1
|
||||
:type interval: int, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 1
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
||||
interval (int, optional): Interval of printing log information, defaults to 1.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
||||
defaults to 1. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@@ -48,10 +49,12 @@ class LogByEpochHook(BaseHook):
|
||||
|
||||
@HOOKS.register_module
|
||||
class LogMetricByStepHook(BaseHook):
|
||||
"""Hook to log metric by step
|
||||
"""Hook to log metric by step.
|
||||
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self, priority: int = 10):
|
||||
@@ -74,11 +77,12 @@ class LogMetricByStepHook(BaseHook):
|
||||
class LogMetricByEpochHook(LogByEpochHook):
|
||||
"""Specialized hook to record the metric to log.
|
||||
|
||||
:param logger: Logger for the log
|
||||
:param interval: Recording interval, defaults to 1
|
||||
:type interval: int, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
||||
interval (int, optional): Interval of printing log information, defaults to 1.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@@ -116,14 +120,14 @@ class LogMetricByEpochHook(LogByEpochHook):
|
||||
class TensorboardHook(BaseHook):
|
||||
"""Specialized hook to record the metric to Tensorboard.
|
||||
|
||||
:param log_dir: Directory of log
|
||||
:type log_dir: str
|
||||
:param ranks: Ranks of processors
|
||||
:type ranks: typing.List
|
||||
:param parallel_mode: Parallel mode, defaults to colossalai.context.parallel_mode.ParallelMode.GLOBAL
|
||||
:type parallel_mode: :class:`colossalai.context.parallel_mode.ParallelMode`, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
log_dir (str): Directory of log.
|
||||
ranks (list): Ranks of processors.
|
||||
parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): Parallel mode used in trainer,
|
||||
defaults to colossalai.context.parallel_mode.ParallelMode.GLOBAL.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@@ -200,18 +204,15 @@ class TensorboardHook(BaseHook):
|
||||
class LogTimingByEpochHook(LogByEpochHook):
|
||||
"""Specialized hook to write timing record to log.
|
||||
|
||||
:param timer: Timer for the hook
|
||||
:type timer: :class:`colossalai.utils.MultiTimer`
|
||||
:param logger: Logger for the log
|
||||
:type logger: :class:`colossalai.logging.DistributedLogger`
|
||||
:param interval: Recording interval, defaults to 1
|
||||
:type interval: int, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
||||
:type priority: int, optional
|
||||
:param log_eval: Whether writes in evaluation, defaults to True
|
||||
:type log_eval: bool, optional
|
||||
:param ignore_num_train_steps: Number of training steps to ignore, defaults to 0
|
||||
:type ignore_num_train_steps: int, optional
|
||||
Args:
|
||||
timer (:class:`colossalai.utils.MultiTimer`): Timer for the hook.
|
||||
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
||||
interval (int, optional): Interval of printing log information, defaults to 1.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
log_eval (bool, optional): Whether writes in evaluation, defaults to True.
|
||||
ignore_num_train_steps (int, optional): Number of training steps to ignore, defaults to 0.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@@ -270,14 +271,13 @@ class LogTimingByEpochHook(LogByEpochHook):
|
||||
class LogMemoryByEpochHook(LogByEpochHook):
|
||||
"""Specialized Hook to write memory usage record to log.
|
||||
|
||||
:param logger: Logger for the log
|
||||
:type logger: colossalai.logging.DistributedLogger
|
||||
:param interval: Recording interval, defaults to 1
|
||||
:type interval: int, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
||||
:type priority: int, optional
|
||||
:param log_eval: Whether writes in evaluation, defaults to True
|
||||
:type log_eval: bool, optional
|
||||
Args:
|
||||
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
||||
interval (int, optional): Interval of printing log information, defaults to 1.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 1. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
log_eval (bool, optional): Whether writes in evaluation, defaults to True.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@@ -6,15 +6,17 @@ from ._metric_hook import LearningRateMetric, MetricHook
|
||||
|
||||
@HOOKS.register_module
|
||||
class LRSchedulerHook(MetricHook):
|
||||
"""Build LR scheduler
|
||||
r"""Build LR scheduler for trainer.
|
||||
|
||||
:param lr_scheduler: LR scheduler
|
||||
:param by_epoch: If `True`, the LR will be scheduled every epoch. Else, the LR will be scheduled every batch
|
||||
:type by_epoch: bool
|
||||
:param store_lr_in_state: If `True`, store the learning rate in each state, defaults to `True`
|
||||
:type store_lr_in_state: bool, optional
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 1
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
lr_scheduler (:class:`colossalai.nn.lr_scheduler`): The specific LR scheduler
|
||||
in range of ``colossalai.nn.lr_scheduler``, more details about ``lr_scheduler`` could be found in
|
||||
`lr_scheduler <https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/nn/lr_scheduler>`_.
|
||||
by_epoch (bool): If `True`, the LR will be scheduled every epoch. Else, the LR will be scheduled every batch.
|
||||
store_lr_in_state (bool, optional): If `True`, store the learning rate in each state, defaults to `True`.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 1. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
|
@@ -17,13 +17,13 @@ from ._base_hook import BaseHook
|
||||
|
||||
class Metric(ABC):
|
||||
"""A basic class of metric collectors. It collects a specific
|
||||
metric during training or evaluation and it's always used with
|
||||
metric during training or evaluation and would always be used with
|
||||
:class:`MetricHook` to help it update its states and show the
|
||||
metric. So please use corresponding hook class to make the metric
|
||||
collector works.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only: bool):
|
||||
@@ -80,8 +80,8 @@ class Metric(ABC):
|
||||
class LossMetric(Metric):
|
||||
"""A metric collector for loss.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only):
|
||||
@@ -101,7 +101,8 @@ class LossMetric(Metric):
|
||||
"""Updates :attr:`last_step_loss` and :attr:`accum_loss` with current loss.
|
||||
It expects the output has loss.
|
||||
|
||||
:param loss: Current loss of the output
|
||||
Args:
|
||||
loss (:class:`torch.tensor`): Current loss of the output.
|
||||
"""
|
||||
# expect output to be logits, label and loss
|
||||
loss_ = loss.detach()
|
||||
@@ -132,10 +133,9 @@ class LossMetric(Metric):
|
||||
class LearningRateMetric(Metric):
|
||||
"""A metric collector for learning rate.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
:param initial_lr: Initial learning rate, defaults to 0.0
|
||||
:type initial_lr: float, optional
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
initial_lr (float, optional): Initial learning rate, defaults to 0.0.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only: bool, initial_lr: float = 0.):
|
||||
@@ -163,10 +163,9 @@ class AccuracyMetric(Metric):
|
||||
"""A metric collector for accuracy. It only works for classification
|
||||
tasks.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
:param accuracy_func: Accuracy function for the classification task
|
||||
:type accuracy_func: :class:`typing.Callable`
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
accuracy_func (:class:`typing.Callable`): Accuracy function for the classification task.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only: bool, accuracy_func: Callable):
|
||||
@@ -187,9 +186,10 @@ class AccuracyMetric(Metric):
|
||||
"""Updates last step accuracy and accumulated accuracy with current logits
|
||||
and labels. It expects the output has logits and labels.
|
||||
|
||||
:param logits: The logits output of the model
|
||||
:param targets: Real labels of the dataset
|
||||
:param batch_size: Batch size of the task
|
||||
Args:
|
||||
logits (:class:`torch.tensor`): The logits output of the model.
|
||||
targets (:class:`torch.tensor`): Real labels of the dataset.
|
||||
batch_size (int): Batch size of the task.
|
||||
"""
|
||||
if isinstance(logits, (list, tuple)):
|
||||
logits = logits[0]
|
||||
@@ -224,8 +224,10 @@ class MetricHook(BaseHook):
|
||||
update their states. Others are used to display and
|
||||
record the metric.
|
||||
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type priority: int
|
||||
Args:
|
||||
priority (int): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 1. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -244,8 +246,10 @@ class MetricHook(BaseHook):
|
||||
class LossHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Loss`.
|
||||
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 0
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 0. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self, priority: int = 0):
|
||||
@@ -283,10 +287,11 @@ class LossHook(MetricHook):
|
||||
class AccuracyHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Accuracy`.
|
||||
|
||||
:param accuracy_func: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type accuracy_func: typing.Callable
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 0
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
accuracy_func (:class:`typing.Callable`): Accuracy function for the classification task.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 0. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self, accuracy_func: Callable, priority: int = 0):
|
||||
@@ -314,8 +319,8 @@ class AccuracyHook(MetricHook):
|
||||
class ThroughputMetric(Metric):
|
||||
"""Metric for :class:`Throughput`.
|
||||
|
||||
:param epoch_only: epoch only
|
||||
:type epoch_only: bool
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
"""
|
||||
def __init__(self, epoch_only: bool, ignored_steps: int = 0):
|
||||
super().__init__(epoch_only=epoch_only)
|
||||
@@ -360,10 +365,13 @@ class ThroughputMetric(Metric):
|
||||
|
||||
@HOOKS.register_module
|
||||
class ThroughputHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Throughput`.
|
||||
"""Specialized hook class for :class:`Throughput`. Hook to measure execution throughput (samples/sec).
|
||||
|
||||
:param priority: priority of throughput hook, defaults to 10
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
ignored_steps (int, optional): the number of initial training steps to ignore.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
def __init__(self, ignored_steps: int = 0, priority: int = 10):
|
||||
super().__init__(priority)
|
||||
|
Reference in New Issue
Block a user