mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-24 03:03:37 +00:00
Refactored docstring to google style
This commit is contained in:
@@ -17,13 +17,13 @@ from ._base_hook import BaseHook
|
||||
|
||||
class Metric(ABC):
|
||||
"""A basic class of metric collectors. It collects a specific
|
||||
metric during training or evaluation and it's always used with
|
||||
metric during training or evaluation and would always be used with
|
||||
:class:`MetricHook` to help it update its states and show the
|
||||
metric. So please use corresponding hook class to make the metric
|
||||
collector works.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only: bool):
|
||||
@@ -80,8 +80,8 @@ class Metric(ABC):
|
||||
class LossMetric(Metric):
|
||||
"""A metric collector for loss.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only):
|
||||
@@ -101,7 +101,8 @@ class LossMetric(Metric):
|
||||
"""Updates :attr:`last_step_loss` and :attr:`accum_loss` with current loss.
|
||||
It expects the output has loss.
|
||||
|
||||
:param loss: Current loss of the output
|
||||
Args:
|
||||
loss (:class:`torch.tensor`): Current loss of the output.
|
||||
"""
|
||||
# expect output to be logits, label and loss
|
||||
loss_ = loss.detach()
|
||||
@@ -132,10 +133,9 @@ class LossMetric(Metric):
|
||||
class LearningRateMetric(Metric):
|
||||
"""A metric collector for learning rate.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
:param initial_lr: Initial learning rate, defaults to 0.0
|
||||
:type initial_lr: float, optional
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
initial_lr (float, optional): Initial learning rate, defaults to 0.0.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only: bool, initial_lr: float = 0.):
|
||||
@@ -163,10 +163,9 @@ class AccuracyMetric(Metric):
|
||||
"""A metric collector for accuracy. It only works for classification
|
||||
tasks.
|
||||
|
||||
:param epoch_only: Whether the metric only read for the full epoch
|
||||
:type epoch_only: bool
|
||||
:param accuracy_func: Accuracy function for the classification task
|
||||
:type accuracy_func: :class:`typing.Callable`
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
accuracy_func (:class:`typing.Callable`): Accuracy function for the classification task.
|
||||
"""
|
||||
|
||||
def __init__(self, epoch_only: bool, accuracy_func: Callable):
|
||||
@@ -187,9 +186,10 @@ class AccuracyMetric(Metric):
|
||||
"""Updates last step accuracy and accumulated accuracy with current logits
|
||||
and labels. It expects the output has logits and labels.
|
||||
|
||||
:param logits: The logits output of the model
|
||||
:param targets: Real labels of the dataset
|
||||
:param batch_size: Batch size of the task
|
||||
Args:
|
||||
logits (:class:`torch.tensor`): The logits output of the model.
|
||||
targets (:class:`torch.tensor`): Real labels of the dataset.
|
||||
batch_size (int): Batch size of the task.
|
||||
"""
|
||||
if isinstance(logits, (list, tuple)):
|
||||
logits = logits[0]
|
||||
@@ -224,8 +224,10 @@ class MetricHook(BaseHook):
|
||||
update their states. Others are used to display and
|
||||
record the metric.
|
||||
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type priority: int
|
||||
Args:
|
||||
priority (int): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 1. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -244,8 +246,10 @@ class MetricHook(BaseHook):
|
||||
class LossHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Loss`.
|
||||
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 0
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 0. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self, priority: int = 0):
|
||||
@@ -283,10 +287,11 @@ class LossHook(MetricHook):
|
||||
class AccuracyHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Accuracy`.
|
||||
|
||||
:param accuracy_func: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type accuracy_func: typing.Callable
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 0
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
accuracy_func (:class:`typing.Callable`): Accuracy function for the classification task.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 0. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self, accuracy_func: Callable, priority: int = 0):
|
||||
@@ -314,8 +319,8 @@ class AccuracyHook(MetricHook):
|
||||
class ThroughputMetric(Metric):
|
||||
"""Metric for :class:`Throughput`.
|
||||
|
||||
:param epoch_only: epoch only
|
||||
:type epoch_only: bool
|
||||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
"""
|
||||
def __init__(self, epoch_only: bool, ignored_steps: int = 0):
|
||||
super().__init__(epoch_only=epoch_only)
|
||||
@@ -360,10 +365,13 @@ class ThroughputMetric(Metric):
|
||||
|
||||
@HOOKS.register_module
|
||||
class ThroughputHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Throughput`.
|
||||
"""Specialized hook class for :class:`Throughput`. Hook to measure execution throughput (samples/sec).
|
||||
|
||||
:param priority: priority of throughput hook, defaults to 10
|
||||
:type priority: int, optional
|
||||
Args:
|
||||
ignored_steps (int, optional): the number of initial training steps to ignore.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
def __init__(self, ignored_steps: int = 0, priority: int = 10):
|
||||
super().__init__(priority)
|
||||
|
Reference in New Issue
Block a user