Refactored docstring to google style

This commit is contained in:
Liang Bowen
2022-03-25 13:02:39 +08:00
committed by アマデウス
parent 53b1b6e340
commit ec5086c49c
94 changed files with 3389 additions and 2982 deletions

View File

@@ -19,18 +19,15 @@ T_co = TypeVar('T_co', covariant=True)
@DATA_SAMPLERS.register_module
class DataParallelSampler(Sampler):
"""A data sampler for distributed data parallelism
"""A data sampler for distributed data parallelism.
:param dataset: A Dataset instance
:type dataset: torch.utils.data.Dataset
:param shuffle: Whether to shuffle data, defaults to False
:type shuffle: bool, optional
:param seed: The random seed, defaults to 0
:type seed: int, optional
:param drop_last: Set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch
size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller,
defaults to False
:type drop_last: bool, optional
Args:
dataset (:class:`torch.utils.data.Dataset`): The Dataset for sampling.
shuffle (bool, optional): Whether to shuffle data, defaults to False.
seed (int, optional): The random seed used for sampling, defaults to 0.
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
is not divisible by the batch size. If False and the size of dataset is not divisible by
the batch size, then the last batch will be smaller, defaults to False.
"""
def __init__(self,
@@ -104,8 +101,8 @@ class DataParallelSampler(Sampler):
use a different random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.
:param epoch: Epoch number.
:type epoch: int
Args:
epoch (int): Epoch number.
"""
self.epoch = epoch
@@ -118,29 +115,27 @@ def get_dataloader(dataset,
pin_memory=False,
num_workers=0,
**kwargs):
"""Set up a deterministic dataloader (also configure seed workers, samplers and whether shuffle or not)
r"""Set up a deterministic dataloader (also configure seed workers, samplers and whether shuffle or not)
.. note:: When pipeline parallel is enabled, shuffle cannot be True as it will result in mismatch between input data
on the 1st stage and label on the last stage
Note:
When pipeline parallel is enabled, shuffle cannot be True as it will result in mismatch between input data
on the 1st stage and label on the last stage.
:param dataset: A :class:`torch.utils.data.Dataset` object
:param shuffle: Whether to shuffle the dataset
:param seed: Random worker seed, defaults to 1024
:param add_sampler: Add DistributedDataParallelSampelr to the dataset
:param drop_last: Drop the last incomplete batch of data
:param pin_memory: Whether to pin memory address in CPU memory
:param num_workers: Number of worker threads for this dataloader
Args:
dataset (:class:`torch.utils.data.Dataset`): The dataset to be loaded.
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
seed (int, optional): Random worker seed for sampling, defaults to 1024.
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
is not divisible by the batch size. If False and the size of dataset is not divisible by
the batch size, then the last batch will be smaller, defaults to False.
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
:type dataset: :class:`torch.utils.data.Dataset`
:type shuffle: bool, optional. Default is False
:type seed: int, optional. Default is 1024
:type add_sampler: bool, optional. Default is True
:type drop_last: bool, optional. Default is False
:type pin_memory: bool, optional. Default is False
:type num_workers: int, optional. Default is 0
:return: A object of :class:`torch.utils.data.DataLoader`
:rtype: :class:`torch.utils.data.DataLoader`
Returns:
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
"""
_kwargs = kwargs.copy()