Refactored docstring to google style

This commit is contained in:
Liang Bowen
2022-03-25 13:02:39 +08:00
committed by アマデウス
parent 53b1b6e340
commit ec5086c49c
94 changed files with 3389 additions and 2982 deletions

View File

@@ -1,74 +1,74 @@
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, UniformNoiseGenerator, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.testing import assert_equal_in_group
from colossalai.testing import rerun_on_exception
BATCH_SIZE = 4
DIM = 16
CONFIG = dict()
def run_test(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=DIM, out_features=DIM, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE initialization
noisy_func = UniformNoiseGenerator()
router = Top1Router(noisy_func=noisy_func)
num_experts_list = [1, 2, 4]
layer_list = []
for num_experts in num_experts_list:
exp = Experts(expert_module, num_experts, **expert_factor)
moe_layer = MoeLayer(DIM, num_experts, router, exp)
layer_list.append(moe_layer)
model = nn.Sequential(*layer_list)
model = model.to(get_current_device())
sync_moe_model_param(model)
dist_dict = MOE_CONTEXT.parallel_info_dict
assert_equal_in_group(layer_list[0].experts.experts[0].weight.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.data, dist_dict[2].dp_group)
# MoE model synchronization passed
grad_handler = MoeGradientHandler(model, 0)
rank = dist.get_rank()
torch.cuda.manual_seed(78 + rank)
data = torch.randn(BATCH_SIZE, DIM, device=get_current_device())
grad = torch.randn_like(data)
MOE_CONTEXT.reset_loss()
outputs = model(data)
outputs.backward(grad)
grad_handler.handle_gradient()
assert_equal_in_group(layer_list[0].experts.experts[0].weight.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[0].experts.experts[0].bias.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.grad, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].bias.grad, dist_dict[2].dp_group)
# MoE grad handler test passed
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_grad_handler():
world_size = 4
run_func = partial(run_test, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_grad_handler()
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, UniformNoiseGenerator, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.testing import assert_equal_in_group
from colossalai.testing import rerun_on_exception
BATCH_SIZE = 4
DIM = 16
CONFIG = dict()
def run_test(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=DIM, out_features=DIM, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE initialization
noisy_func = UniformNoiseGenerator()
router = Top1Router(noisy_func=noisy_func)
num_experts_list = [1, 2, 4]
layer_list = []
for num_experts in num_experts_list:
exp = Experts(expert_module, num_experts, **expert_factor)
moe_layer = MoeLayer(DIM, num_experts, router, exp)
layer_list.append(moe_layer)
model = nn.Sequential(*layer_list)
model = model.to(get_current_device())
sync_moe_model_param(model)
dist_dict = MOE_CONTEXT.parallel_info_dict
assert_equal_in_group(layer_list[0].experts.experts[0].weight.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.data, dist_dict[2].dp_group)
# MoE model synchronization passed
grad_handler = MoeGradientHandler(model, 0)
rank = dist.get_rank()
torch.cuda.manual_seed(78 + rank)
data = torch.randn(BATCH_SIZE, DIM, device=get_current_device())
grad = torch.randn_like(data)
MOE_CONTEXT.reset_loss()
outputs = model(data)
outputs.backward(grad)
grad_handler.handle_gradient()
assert_equal_in_group(layer_list[0].experts.experts[0].weight.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[0].experts.experts[0].bias.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.grad, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].bias.grad, dist_dict[2].dp_group)
# MoE grad handler test passed
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_grad_handler():
world_size = 4
run_func = partial(run_test, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_grad_handler()

View File

@@ -1,104 +1,104 @@
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import colossalai
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, Top2Router, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.testing import rerun_on_exception
BATCH_SIZE = 16
NUM_EXPERTS = 4
CONFIG = dict()
def check_equal(tensor_a, tensor_b, atol=1e-06):
assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, router=Top2Router):
# Here we do not need TF32, since it brings absolute error on results
torch.backends.cuda.matmul.allow_tf32 = False
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
MOE_CONTEXT.setup(42) # MOE environment initialization
MOE_CONTEXT.reset_loss()
torch.manual_seed(rs + local_rank) # set each process has different random seed
# get randomized data
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
expert_module = nn.Linear
expert_factor = dict(in_features=hidden_size, out_features=hidden_size, device=get_current_device())
expert = Experts(expert_module, NUM_EXPERTS, **expert_factor)
layer = MoeLayer(hidden_size, NUM_EXPERTS, router(capacity_factor_train=1.0), expert)
if data_type == torch.float16:
layer = layer.half()
# use matrix multiplication instead of COL_MOE_KERNL in MOE dispatch and combine
layer.use_kernel = False
old_out = layer(tokens)
ech = old_out.shape
grad = torch.randn(ech, device=get_current_device())
old_out.backward(grad) # get gradient
# save all results
o_tk_grad = tokens.grad.data.clone()
o_gt_grad = layer.gate.weight.grad.data.clone()
# reset all gradients
tokens.grad.zero_()
layer.gate.weight.grad.zero_()
layer.use_kernel = True
new_out = layer(tokens) # get ouputs through colossal kernel
if data_type == torch.float32:
check_equal(old_out, new_out)
else:
check_equal(old_out, new_out, 1e-2)
# forward function passed
new_out.backward(grad) # get new type gradient
n_tk_grad = tokens.grad.data.clone()
n_gt_grad = layer.gate.weight.grad.data.clone()
if data_type == torch.float32:
check_equal(o_tk_grad, n_tk_grad)
else:
check_equal(o_tk_grad, o_tk_grad, 1e-2)
# tokens gradient is correct
if data_type == torch.float32:
check_equal(o_gt_grad, n_gt_grad, 5e-05)
else:
check_equal(o_gt_grad, n_gt_grad, 2e-01)
# bias gradient is correct
@pytest.mark.dist
@pytest.mark.parametrize("rs", [131])
@pytest.mark.parametrize("hidden_size", [32, 144])
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
@pytest.mark.parametrize("router", [Top1Router, Top2Router])
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_moe_kernel(rs, hidden_size, data_type, router):
world_size = 4
run_func = partial(run_routing,
world_size=world_size,
port=free_port(),
rs=rs,
hidden_size=hidden_size,
data_type=data_type,
router=router)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_kernel(2, 256, torch.float16, Top2Router)
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import colossalai
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, Top2Router, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.testing import rerun_on_exception
BATCH_SIZE = 16
NUM_EXPERTS = 4
CONFIG = dict()
def check_equal(tensor_a, tensor_b, atol=1e-06):
assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, router=Top2Router):
# Here we do not need TF32, since it brings absolute error on results
torch.backends.cuda.matmul.allow_tf32 = False
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
MOE_CONTEXT.setup(42) # MOE environment initialization
MOE_CONTEXT.reset_loss()
torch.manual_seed(rs + local_rank) # set each process has different random seed
# get randomized data
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
expert_module = nn.Linear
expert_factor = dict(in_features=hidden_size, out_features=hidden_size, device=get_current_device())
expert = Experts(expert_module, NUM_EXPERTS, **expert_factor)
layer = MoeLayer(hidden_size, NUM_EXPERTS, router(capacity_factor_train=1.0), expert)
if data_type == torch.float16:
layer = layer.half()
# use matrix multiplication instead of COL_MOE_KERNL in MOE dispatch and combine
layer.use_kernel = False
old_out = layer(tokens)
ech = old_out.shape
grad = torch.randn(ech, device=get_current_device())
old_out.backward(grad) # get gradient
# save all results
o_tk_grad = tokens.grad.data.clone()
o_gt_grad = layer.gate.weight.grad.data.clone()
# reset all gradients
tokens.grad.zero_()
layer.gate.weight.grad.zero_()
layer.use_kernel = True
new_out = layer(tokens) # get ouputs through colossal kernel
if data_type == torch.float32:
check_equal(old_out, new_out)
else:
check_equal(old_out, new_out, 1e-2)
# forward function passed
new_out.backward(grad) # get new type gradient
n_tk_grad = tokens.grad.data.clone()
n_gt_grad = layer.gate.weight.grad.data.clone()
if data_type == torch.float32:
check_equal(o_tk_grad, n_tk_grad)
else:
check_equal(o_tk_grad, o_tk_grad, 1e-2)
# tokens gradient is correct
if data_type == torch.float32:
check_equal(o_gt_grad, n_gt_grad, 5e-05)
else:
check_equal(o_gt_grad, n_gt_grad, 2e-01)
# bias gradient is correct
@pytest.mark.dist
@pytest.mark.parametrize("rs", [131])
@pytest.mark.parametrize("hidden_size", [32, 144])
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
@pytest.mark.parametrize("router", [Top1Router, Top2Router])
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_moe_kernel(rs, hidden_size, data_type, router):
world_size = 4
run_func = partial(run_routing,
world_size=world_size,
port=free_port(),
rs=rs,
hidden_size=hidden_size,
data_type=data_type,
router=router)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_kernel(2, 256, torch.float16, Top2Router)

View File

@@ -1,71 +1,71 @@
from functools import partial
import pytest
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.testing import assert_equal_in_group, rerun_on_exception
D_MODEL = 4
D_FF = 8
CONFIG = dict()
def run_test(rank, port):
world_size = 4
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=D_MODEL, out_features=D_FF, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE environment initialization
exp0 = Experts(expert_module, 1, **expert_factor)
exp1 = Experts(expert_module, 2, **expert_factor)
exp2 = Experts(expert_module, 4, **expert_factor)
exp3 = Experts(expert_module, 8, **expert_factor)
assert exp0.num_local_experts == 1
assert exp1.num_local_experts == 1
assert exp2.num_local_experts == 1
assert exp3.num_local_experts == 2
# experts deployment passed
parallel_info_dict = MOE_CONTEXT.parallel_info_dict
rank = dist.get_rank()
assert len(parallel_info_dict) == 3
assert dist.get_rank(parallel_info_dict[4].ep_group) == rank
assert dist.get_rank(parallel_info_dict[2].ep_group) == rank % 2
assert dist.get_rank(parallel_info_dict[1].ep_group) == 0
assert dist.get_rank(parallel_info_dict[4].dp_group) == 0
assert dist.get_rank(parallel_info_dict[2].dp_group) == rank // 2
assert dist.get_rank(parallel_info_dict[1].dp_group) == rank
# group creation passed
model = nn.ModuleList([exp0, exp1, exp2, exp3])
model = model.to(get_current_device())
sync_moe_model_param(model)
assert_equal_in_group(exp0.experts[0].weight.data, parallel_info_dict[1].dp_group)
assert_equal_in_group(exp0.experts[0].bias.data, parallel_info_dict[1].dp_group)
# MOE experts layout success when ep_size = 1
assert_equal_in_group(exp1.experts[0].weight.data, parallel_info_dict[2].dp_group)
assert_equal_in_group(exp1.experts[0].bias.data, parallel_info_dict[2].dp_group)
# MOE experts layout success when ep_size = 2
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_moe_initialization():
world_size = 4
run_func = partial(run_test, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_initialization()
from functools import partial
import pytest
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.testing import assert_equal_in_group, rerun_on_exception
D_MODEL = 4
D_FF = 8
CONFIG = dict()
def run_test(rank, port):
world_size = 4
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=D_MODEL, out_features=D_FF, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE environment initialization
exp0 = Experts(expert_module, 1, **expert_factor)
exp1 = Experts(expert_module, 2, **expert_factor)
exp2 = Experts(expert_module, 4, **expert_factor)
exp3 = Experts(expert_module, 8, **expert_factor)
assert exp0.num_local_experts == 1
assert exp1.num_local_experts == 1
assert exp2.num_local_experts == 1
assert exp3.num_local_experts == 2
# experts deployment passed
parallel_info_dict = MOE_CONTEXT.parallel_info_dict
rank = dist.get_rank()
assert len(parallel_info_dict) == 3
assert dist.get_rank(parallel_info_dict[4].ep_group) == rank
assert dist.get_rank(parallel_info_dict[2].ep_group) == rank % 2
assert dist.get_rank(parallel_info_dict[1].ep_group) == 0
assert dist.get_rank(parallel_info_dict[4].dp_group) == 0
assert dist.get_rank(parallel_info_dict[2].dp_group) == rank // 2
assert dist.get_rank(parallel_info_dict[1].dp_group) == rank
# group creation passed
model = nn.ModuleList([exp0, exp1, exp2, exp3])
model = model.to(get_current_device())
sync_moe_model_param(model)
assert_equal_in_group(exp0.experts[0].weight.data, parallel_info_dict[1].dp_group)
assert_equal_in_group(exp0.experts[0].bias.data, parallel_info_dict[1].dp_group)
# MOE experts layout success when ep_size = 1
assert_equal_in_group(exp1.experts[0].weight.data, parallel_info_dict[2].dp_group)
assert_equal_in_group(exp1.experts[0].bias.data, parallel_info_dict[2].dp_group)
# MOE experts layout success when ep_size = 2
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_moe_initialization():
world_size = 4
run_func = partial(run_test, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_initialization()