mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-27 03:21:47 +00:00
[CI] Cleanup Dist Optim tests with shared helper funcs (#6125)
* Refractor and cleanup using common helper funcs. Tests passed * Update comments * Fix relative import * Fix param fetching bug
This commit is contained in:
parent
5c09d726a6
commit
ec73f1b5e2
@ -384,7 +384,7 @@ class Linear1D_Row(ParallelModule):
|
||||
out_features (int): size of each output sample.
|
||||
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
||||
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
||||
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False.
|
||||
parallel_input (bool): If set to ``True``, it's assumed that the input is already split/copied across each rank, defaults to False.
|
||||
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
|
||||
seq_parallel_mode (`str`): The type of sp mode, it will use sequence parallel when `seq_parallel_mode` is not None. Defaults to None.
|
||||
seq_parallel_dim (`int`): Which dim will sequence parallelism split and gather the sequence.
|
||||
@ -544,14 +544,14 @@ class Linear1D_Row(ParallelModule):
|
||||
if self.parallel_input:
|
||||
assert (
|
||||
input_.shape[-1] == self.weight.shape[-1]
|
||||
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
|
||||
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected feature dim of input {}.".format(
|
||||
input_.shape, self.weight.shape, self.weight.shape[-1]
|
||||
)
|
||||
input_ = input_
|
||||
else:
|
||||
assert (
|
||||
divide(input_.shape[-1], self.num_partitions) == self.weight.shape[-1]
|
||||
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
|
||||
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected feature dim of input {}.".format(
|
||||
input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions
|
||||
)
|
||||
input_ = split_forward_gather_backward(
|
||||
|
@ -13,7 +13,7 @@ _HID_DIM = 128
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self, in_dim=_IN_DIM, hid_dim=_HID_DIM, identity=False, dtype=torch.float32):
|
||||
def __init__(self, in_dim=_IN_DIM, hid_dim=_HID_DIM, identity=True, dtype=torch.float32):
|
||||
super().__init__()
|
||||
if identity:
|
||||
self.fc0 = nn.Identity()
|
||||
@ -30,7 +30,7 @@ class Net(nn.Module):
|
||||
class TPNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
fc0=nn.Linear(_IN_DIM, _IN_DIM),
|
||||
fc0=nn.Identity(),
|
||||
fc1=nn.Linear(_IN_DIM, _HID_DIM),
|
||||
fc2=nn.Linear(_HID_DIM, _IN_DIM),
|
||||
tp_group=None,
|
||||
|
@ -1,10 +1,13 @@
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.shardformer.layer.utils import Randomizer
|
||||
from colossalai.tensor.d_tensor import get_layout, get_sharding_spec, is_distributed_tensor
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.tensor.d_tensor.sharding_spec import DimSpec
|
||||
from colossalai.testing import parameterize, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
@ -15,6 +18,88 @@ from tests.test_shardformer.test_model._utils import (
|
||||
)
|
||||
|
||||
|
||||
def force_assign_grad(p, g_dtype, grad=None):
|
||||
"""Bypass inconsistent grad and param dtype error when assigning grad"""
|
||||
orig_p = p.data
|
||||
p.data = torch.randn_like(p, device=orig_p.device, dtype=g_dtype) if grad == None else grad.clone().to(g_dtype)
|
||||
p.grad = p.data
|
||||
p.data = orig_p
|
||||
|
||||
|
||||
def setup_param_groups(model: nn.Module) -> list:
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.1,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
# setup flatten param groups, sharding spec and shape; (For dist Adafactor and CAME)
|
||||
def setup_flatten_param_groups_sharding_spec_shape(model: nn.Module) -> dict:
|
||||
flatten_optimizer_grouped_parameters = []
|
||||
sharding_spec = {} # {id(flatten param): get_layout(p).global_shape}
|
||||
param_shape = {} # {id(flatten param): get_sharding_spec(p)}
|
||||
for n, p in model.named_parameters():
|
||||
# flatten_p = copy.deepcopy(p).flatten()
|
||||
flatten_p = nn.Parameter(p.clone().flatten().requires_grad_(True))
|
||||
flatten_optimizer_grouped_parameters.append(flatten_p)
|
||||
if is_distributed_tensor(p):
|
||||
sharding_spec[id(flatten_p)] = get_sharding_spec(p)
|
||||
param_shape[id(flatten_p)] = get_layout(p).global_shape
|
||||
else:
|
||||
sharding_spec[id(flatten_p)] = None
|
||||
param_shape[id(flatten_p)] = p.shape
|
||||
return flatten_optimizer_grouped_parameters, sharding_spec, param_shape
|
||||
|
||||
|
||||
def set_master_param_to_shard_param(master_param_list) -> dict:
|
||||
master_param_to_shard_param = {id(p): p for p in master_param_list}
|
||||
return master_param_to_shard_param
|
||||
|
||||
|
||||
def set_dist_grad(
|
||||
dist_module: nn.Module,
|
||||
torch_model: nn.Module,
|
||||
g_dtype: torch.dtype,
|
||||
group: dist.ProcessGroup,
|
||||
tp_spec: DimSpec,
|
||||
) -> None:
|
||||
"""
|
||||
Set split grads for Tensor Parallel or ZeRO DP.
|
||||
We do not need a separate treatment for ZeRO,
|
||||
as the wrapper takes care of reduce-scattering grads.
|
||||
"""
|
||||
rank = dist.get_rank(group)
|
||||
world_size = dist.get_world_size(group)
|
||||
|
||||
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
||||
if torch_p.grad is None:
|
||||
torch_p.grad = torch.zeros_like(torch_p)
|
||||
|
||||
is_distributed = hasattr(p, "dist_layout")
|
||||
if is_distributed:
|
||||
sharding = p.dist_layout.sharding_spec.sharding_sequence
|
||||
split_dim = sharding.index(tp_spec)
|
||||
shape = torch_p.split(world_size, dim=split_dim)[rank].shape
|
||||
|
||||
indices = torch.arange(shape[split_dim] * rank, shape[split_dim] * (rank + 1))
|
||||
# Generate grads only for the correctly split chunk
|
||||
torch_p.grad.index_add_(split_dim, indices, torch.randn(shape, device=torch_p.device, dtype=g_dtype))
|
||||
|
||||
else:
|
||||
shape = torch_p.shape
|
||||
torch_p.grad += torch.randn(shape, device=torch_p.device, dtype=g_dtype)
|
||||
|
||||
force_assign_grad(p, g_dtype, grad=torch_p.grad)
|
||||
|
||||
|
||||
def check_optim_states(org_optim, sharded_optim):
|
||||
for group in org_optim.param_groups:
|
||||
for p in group["params"]:
|
||||
|
@ -8,6 +8,7 @@ from torch.optim import Adam, AdamW
|
||||
|
||||
from colossalai.nn.optimizer import CPUAdam, FusedAdam, HybridAdam
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_optimizer._utils import force_assign_grad, setup_param_groups
|
||||
|
||||
_ALLOWED_OPTIM_DEVICES = [
|
||||
(FusedAdam, torch.device("cuda:0")),
|
||||
@ -26,29 +27,11 @@ _ALLOWED_P_G_TYPES = [
|
||||
N_STEPS = 3
|
||||
|
||||
|
||||
def setup_param_groups(bert_model: nn.Module) -> list:
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in bert_model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.1,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in bert_model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
def set_grad(model: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype) -> None:
|
||||
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
||||
torch_p.grad = torch.rand_like(torch_p)
|
||||
# avoid inconsistent grad and param dtype error
|
||||
orig_p = p.data
|
||||
p.data = torch_p.grad.clone().to(g_dtype)
|
||||
p.grad = p.data
|
||||
p.data = orig_p
|
||||
force_assign_grad(p, g_dtype, torch_p.grad)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("optim_cls, device", _ALLOWED_OPTIM_DEVICES)
|
||||
|
@ -1,5 +1,3 @@
|
||||
import copy
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
@ -16,7 +14,6 @@ from colossalai.shardformer.layer.utils import Randomizer
|
||||
from colossalai.tensor.d_tensor import (
|
||||
distribute_tensor,
|
||||
get_device_mesh,
|
||||
get_layout,
|
||||
get_sharding_spec,
|
||||
is_distributed_tensor,
|
||||
shard_colwise,
|
||||
@ -28,7 +25,13 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.zero import LowLevelZeroOptimizer
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_optimizer._utils import check_dist_optim_state, check_dist_param, check_optim_states
|
||||
from tests.test_optimizer._utils import (
|
||||
check_dist_optim_state,
|
||||
check_dist_param,
|
||||
check_optim_states,
|
||||
set_master_param_to_shard_param,
|
||||
setup_param_groups,
|
||||
)
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
build_model_from_low_level_zero_plugin,
|
||||
@ -38,10 +41,13 @@ from tests.test_shardformer.test_model._utils import (
|
||||
unwrap_model,
|
||||
)
|
||||
|
||||
HEIGHT = 4
|
||||
WIDTH = 4
|
||||
IN_DIM = 4
|
||||
HID_DIM = 4
|
||||
_TP_SPEC = DimSpec([0])
|
||||
|
||||
Net, data_gen, *_ = next(iter(model_zoo.get_sub_registry("simple_mlp").values()))
|
||||
TPNet, *_ = next(iter(model_zoo.get_sub_registry("simple_tp_mlp").values()))
|
||||
|
||||
|
||||
def correctness_verify(tensor1: torch.Tensor, tensor2: torch.Tensor, dtype: torch.dtype = torch.float32):
|
||||
rtol = None
|
||||
@ -59,92 +65,11 @@ def correctness_verify(tensor1: torch.Tensor, tensor2: torch.Tensor, dtype: torc
|
||||
assert_close(tensor1, tensor2, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
# setup param groups; (For zero test optim)
|
||||
def setup_param_groups_zero(model: nn.Module) -> list:
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.1,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
# setup param groups; (For base optim)
|
||||
def setup_param_groups(model: nn.Module) -> list:
|
||||
optimizer_grouped_parameters = [p for n, p in model.named_parameters()]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
# setup flatten param groups, sharding spec and shape; (For dist optim)
|
||||
def setup_flatten_param_groups_sharding_spec_shape(model: nn.Module) -> dict:
|
||||
flatten_optimizer_grouped_parameters = []
|
||||
sharding_spec = {} # {id(flatten param): get_layout(p).global_shape}
|
||||
param_shape = {} # {id(flatten param): get_sharding_spec(p)}
|
||||
for n, p in model.named_parameters():
|
||||
# flatten_p = copy.deepcopy(p).flatten()
|
||||
flatten_p = nn.Parameter(p.clone().flatten().requires_grad_(True))
|
||||
flatten_optimizer_grouped_parameters.append(flatten_p)
|
||||
if is_distributed_tensor(p):
|
||||
sharding_spec[id(flatten_p)] = get_sharding_spec(p)
|
||||
param_shape[id(flatten_p)] = get_layout(p).global_shape
|
||||
else:
|
||||
sharding_spec[id(flatten_p)] = None
|
||||
param_shape[id(flatten_p)] = p.shape
|
||||
return flatten_optimizer_grouped_parameters, sharding_spec, param_shape
|
||||
|
||||
|
||||
def set_dist_grad(
|
||||
dist_module: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype, group: dist.ProcessGroup
|
||||
) -> None:
|
||||
"""
|
||||
Set split grads for Tensor Parallel or ZeRO DP.
|
||||
We do not need a separate treatment for ZeRO,
|
||||
as the wrapper takes care of reduce-scattering grads.
|
||||
"""
|
||||
rank = dist.get_rank(group)
|
||||
world_size = dist.get_world_size(group)
|
||||
|
||||
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
||||
if torch_p.grad is None:
|
||||
torch_p.grad = torch.zeros_like(torch_p)
|
||||
|
||||
is_distributed = hasattr(p, "dist_layout")
|
||||
if is_distributed:
|
||||
sharding = p.dist_layout.sharding_spec.sharding_sequence
|
||||
split_dim = sharding.index(_TP_SPEC)
|
||||
shape = torch_p.split(world_size, dim=split_dim)[rank].shape
|
||||
|
||||
indices = torch.arange(shape[split_dim] * rank, shape[split_dim] * (rank + 1))
|
||||
# Generate grads only for the correctly split chunk
|
||||
torch_p.grad.index_add_(split_dim, indices, torch.randn(shape, device=torch_p.device, dtype=g_dtype))
|
||||
|
||||
else:
|
||||
shape = torch_p.shape
|
||||
torch_p.grad += torch.randn(shape, device=torch_p.device, dtype=g_dtype)
|
||||
|
||||
# avoid inconsistent grad and param dtype error
|
||||
orig_p = p.data
|
||||
p.data = torch_p.grad.clone().to(g_dtype)
|
||||
p.grad = p.data
|
||||
p.data = orig_p
|
||||
|
||||
|
||||
def set_master_param_to_shard_param(master_param_list) -> dict:
|
||||
master_param_to_shard_param = {id(p): p for p in master_param_list}
|
||||
return master_param_to_shard_param
|
||||
|
||||
|
||||
class MlpModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(MlpModel, self).__init__()
|
||||
self.linear1 = nn.Linear(HEIGHT, WIDTH)
|
||||
self.linear2 = nn.Linear(WIDTH, HEIGHT)
|
||||
self.linear1 = nn.Linear(IN_DIM, HID_DIM)
|
||||
self.linear2 = nn.Linear(HID_DIM, IN_DIM)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
@ -182,7 +107,7 @@ def exam_dist_adafactor_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
# ==============================
|
||||
# Base Case
|
||||
# ==============================
|
||||
H, W = HEIGHT, WIDTH
|
||||
H, W = IN_DIM, HID_DIM
|
||||
model_col = nn.Linear(H, W).to(local_rank) # Col parallel weight
|
||||
weight, bias = model_col.weight, model_col.bias
|
||||
|
||||
@ -284,8 +209,11 @@ def exam_dist_adafactor_zero(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
# ==============================
|
||||
# Model Init
|
||||
# ==============================
|
||||
base_model = MlpModel().to(local_rank)
|
||||
tp_model = TPModel(copy.deepcopy(base_model.linear1), copy.deepcopy(base_model.linear2), tp_group).to(local_rank)
|
||||
# base_model = MlpModel().to(local_rank)
|
||||
# tp_model = TPModel(copy.deepcopy(base_model.linear1), copy.deepcopy(base_model.linear2), tp_group).to(local_rank)
|
||||
base_model = Net(in_dim=IN_DIM, hid_dim=HID_DIM, dtype=dtype).to(local_rank)
|
||||
# Must specify dtype; TPNet init seem to run out of set_default_dtype scope
|
||||
tp_model = TPNet(fc1=base_model.fc1, fc2=base_model.fc2, tp_group=tp_group, dtype=dtype)
|
||||
|
||||
base_param_group = setup_param_groups(base_model)
|
||||
tp_param_group = setup_param_groups(tp_model)
|
||||
@ -335,7 +263,7 @@ def exam_dist_adafactor_zero(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
# ==============================
|
||||
# Correctness Verify
|
||||
# ==============================
|
||||
x = torch.randn(HEIGHT, WIDTH, device=local_rank)
|
||||
x = torch.randn(IN_DIM, HID_DIM, device=local_rank)
|
||||
|
||||
out = base_model(x)
|
||||
out_tp = tp_model(x)
|
||||
@ -353,7 +281,9 @@ def exam_dist_adafactor_zero(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
base_optim.zero_grad()
|
||||
dist_optim.zero_grad()
|
||||
|
||||
for p, tp_p in zip(base_param_group, tp_param_group):
|
||||
base_params = base_model.parameters()
|
||||
tp_params = tp_model.parameters()
|
||||
for p, tp_p in zip(base_params, tp_params):
|
||||
param_is_distributed = is_distributed_tensor(tp_p)
|
||||
if param_is_distributed:
|
||||
shard_spec = get_sharding_spec(tp_p)
|
||||
|
@ -1,9 +1,6 @@
|
||||
import copy
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch import nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
@ -11,17 +8,23 @@ from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.nn.optimizer.came import CAME
|
||||
from colossalai.nn.optimizer.distributed_came import DistributedCAME
|
||||
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
||||
from colossalai.shardformer.layer._operation import _gather
|
||||
from colossalai.shardformer.layer.utils import Randomizer
|
||||
from colossalai.tensor.d_tensor import get_layout, get_sharding_spec, is_distributed_tensor
|
||||
from colossalai.tensor.d_tensor import get_sharding_spec, is_distributed_tensor
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.tensor.d_tensor.sharding_spec import DimSpec
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from colossalai.zero import LowLevelZeroOptimizer
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_optimizer._utils import check_dist_grad, check_dist_optim_state, check_dist_param, check_optim_states
|
||||
from tests.test_optimizer._utils import (
|
||||
check_dist_grad,
|
||||
check_dist_optim_state,
|
||||
check_dist_param,
|
||||
check_optim_states,
|
||||
set_master_param_to_shard_param,
|
||||
setup_param_groups,
|
||||
)
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
build_model_from_low_level_zero_plugin,
|
||||
@ -30,10 +33,12 @@ from tests.test_shardformer.test_model._utils import (
|
||||
unwrap_model,
|
||||
)
|
||||
|
||||
HEIGHT = 128
|
||||
WIDTH = 128
|
||||
IN_DIM = 128
|
||||
HID_DIM = 128
|
||||
_TP_SPEC = DimSpec([0])
|
||||
_SEED = 0
|
||||
Net, data_gen, *_ = next(iter(model_zoo.get_sub_registry("simple_mlp").values()))
|
||||
TPNet, *_ = next(iter(model_zoo.get_sub_registry("simple_tp_mlp").values()))
|
||||
|
||||
|
||||
def correctness_verify(tensor1: torch.Tensor, tensor2: torch.Tensor, dtype: torch.dtype = torch.float32):
|
||||
@ -53,112 +58,6 @@ def correctness_verify(tensor1: torch.Tensor, tensor2: torch.Tensor, dtype: torc
|
||||
assert_close(tensor1, tensor2, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
# setup param groups; (For zero test optim)
|
||||
def setup_param_groups_zero(model: nn.Module) -> list:
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.1,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
# setup param groups; (For base optim)
|
||||
def setup_param_groups(model: nn.Module) -> list:
|
||||
optimizer_grouped_parameters = [p for n, p in model.named_parameters()]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
# setup flatten param groups, sharding spec and shape; (For dist optim)
|
||||
def setup_flatten_param_groups_sharding_spec_shape(model: nn.Module) -> dict:
|
||||
flatten_optimizer_grouped_parameters = []
|
||||
sharding_spec = {} # {id(flatten param): get_layout(p).global_shape}
|
||||
param_shape = {} # {id(flatten param): get_sharding_spec(p)}
|
||||
for n, p in model.named_parameters():
|
||||
flatten_p = nn.Parameter(p.clone().flatten().requires_grad_(True))
|
||||
flatten_optimizer_grouped_parameters.append(flatten_p)
|
||||
if is_distributed_tensor(p):
|
||||
sharding_spec[id(flatten_p)] = get_sharding_spec(p)
|
||||
param_shape[id(flatten_p)] = get_layout(p).global_shape
|
||||
else:
|
||||
sharding_spec[id(flatten_p)] = None
|
||||
param_shape[id(flatten_p)] = p.shape
|
||||
return flatten_optimizer_grouped_parameters, sharding_spec, param_shape
|
||||
|
||||
|
||||
def set_dist_grad(
|
||||
dist_module: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype, group: dist.ProcessGroup
|
||||
) -> None:
|
||||
"""
|
||||
Set split grads for Tensor Parallel or ZeRO DP.
|
||||
We do not need a separate treatment for ZeRO,
|
||||
as the wrapper takes care of reduce-scattering grads.
|
||||
"""
|
||||
rank = dist.get_rank(group)
|
||||
world_size = dist.get_world_size(group)
|
||||
|
||||
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
||||
if torch_p.grad is None:
|
||||
torch_p.grad = torch.zeros_like(torch_p)
|
||||
|
||||
is_distributed = hasattr(p, "dist_layout")
|
||||
if is_distributed:
|
||||
sharding = p.dist_layout.sharding_spec.sharding_sequence
|
||||
split_dim = sharding.index(_TP_SPEC)
|
||||
shape = torch_p.split(world_size, dim=split_dim)[rank].shape
|
||||
|
||||
indices = torch.arange(shape[split_dim] * rank, shape[split_dim] * (rank + 1))
|
||||
# Generate grads only for the correctly split chunk
|
||||
torch_p.grad.index_add_(split_dim, indices, torch.randn(shape, device=torch_p.device, dtype=g_dtype))
|
||||
|
||||
else:
|
||||
shape = torch_p.shape
|
||||
torch_p.grad += torch.randn(shape, device=torch_p.device, dtype=g_dtype)
|
||||
|
||||
# avoid inconsistent grad and param dtype error
|
||||
orig_p = p.data
|
||||
p.data = torch_p.grad.clone().to(g_dtype)
|
||||
p.grad = p.data
|
||||
p.data = orig_p
|
||||
|
||||
|
||||
def set_master_param_to_shard_param(master_param_list) -> dict:
|
||||
master_param_to_shard_param = {id(p): p for p in master_param_list}
|
||||
return master_param_to_shard_param
|
||||
|
||||
|
||||
class MlpModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(MlpModel, self).__init__()
|
||||
self.linear1 = nn.Linear(HEIGHT, WIDTH)
|
||||
self.linear2 = nn.Linear(WIDTH, HEIGHT)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
return x
|
||||
|
||||
|
||||
class TPModel(nn.Module):
|
||||
def __init__(self, linear1, linear2, tp_group=None):
|
||||
super().__init__()
|
||||
self.linear1 = Linear1D_Col.from_native_module(
|
||||
linear1, process_group=tp_group, gather_output=False, overlap=True
|
||||
)
|
||||
self.linear2 = Linear1D_Row.from_native_module(linear2, process_group=tp_group, parallel_input=True)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
return x
|
||||
|
||||
|
||||
@parameterize("dtype", [torch.float32]) # torch.float32, torch.float16, torch.bfloat16
|
||||
@parameterize("tp_zero_size", [(2, 2), (4, 1), (1, 4)]) # (4, 1), (1, 4)
|
||||
def exam_dist_came_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
@ -177,12 +76,13 @@ def exam_dist_came_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
# ==============================
|
||||
# Model Init
|
||||
# ==============================
|
||||
base_model = MlpModel().to(local_rank)
|
||||
tp_model = TPModel(copy.deepcopy(base_model.linear1), copy.deepcopy(base_model.linear2), tp_group).to(local_rank)
|
||||
base_model = Net(in_dim=IN_DIM, hid_dim=HID_DIM, dtype=dtype).to(local_rank)
|
||||
# tp_model = TPModel(copy.deepcopy(base_model.linear1), copy.deepcopy(base_model.linear2), tp_group).to(local_rank)
|
||||
tp_model = TPNet(fc1=base_model.fc1, fc2=base_model.fc2, tp_group=tp_group, dtype=dtype)
|
||||
|
||||
base_param_group = setup_param_groups(base_model)
|
||||
tp_param_group = setup_param_groups(tp_model)
|
||||
tp_param_group_, tp_shard_spec, tp_param_shape = setup_flatten_param_groups_sharding_spec_shape(tp_model)
|
||||
# tp_param_group_, tp_shard_spec, tp_param_shape = setup_flatten_param_groups_sharding_spec_shape(tp_model)
|
||||
|
||||
# ==============================
|
||||
# Optimizer Init
|
||||
@ -220,7 +120,7 @@ def exam_dist_came_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
# Correctness Verify
|
||||
# ==============================
|
||||
seed_all(1024)
|
||||
x = torch.randn(WIDTH, HEIGHT, device=local_rank)
|
||||
x = torch.randn(HID_DIM, IN_DIM, device=local_rank)
|
||||
|
||||
out = base_model(x)
|
||||
out_tp = tp_model(x)
|
||||
@ -238,7 +138,9 @@ def exam_dist_came_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
base_optim.zero_grad()
|
||||
dist_optim.zero_grad()
|
||||
|
||||
for p, tp_p in zip(base_param_group, tp_param_group):
|
||||
base_params = base_model.parameters()
|
||||
tp_params = tp_model.parameters()
|
||||
for p, tp_p in zip(base_params, tp_params):
|
||||
param_is_distributed = is_distributed_tensor(tp_p)
|
||||
if param_is_distributed:
|
||||
shard_spec = get_sharding_spec(tp_p)
|
||||
@ -256,6 +158,7 @@ def exam_dist_came_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
||||
# No TP bias
|
||||
pass
|
||||
correctness_verify(p.data, tp_p.data, dtype)
|
||||
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
@ -3,7 +3,6 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
@ -17,7 +16,7 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from colossalai.zero import LowLevelZeroOptimizer
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_optimizer._utils import check_optim_states, run_bert_test
|
||||
from tests.test_optimizer._utils import check_optim_states, run_bert_test, set_dist_grad
|
||||
|
||||
_ALLOWED_P_G_TYPES = [
|
||||
(torch.float, torch.float), # pure fp32
|
||||
@ -109,39 +108,6 @@ def force_assign_grad(p, g_dtype, grad=None):
|
||||
p.data = orig_p
|
||||
|
||||
|
||||
def set_dist_grad(
|
||||
dist_module: nn.Module,
|
||||
torch_model: nn.Module,
|
||||
g_dtype: torch.dtype,
|
||||
group: dist.ProcessGroup,
|
||||
) -> None:
|
||||
"""
|
||||
Set grads chunks for Tensor Parallel or ZeRO DP.
|
||||
We do not need a separate treatment for ZeRO,
|
||||
as the LowLevelOptimizer takes care of reduce-scattering grads.
|
||||
"""
|
||||
rank = dist.get_rank(group)
|
||||
world_size = dist.get_world_size(group)
|
||||
|
||||
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
||||
if torch_p.grad is None:
|
||||
# avoid inconsistent grad and param dtype error
|
||||
force_assign_grad(torch_p, g_dtype)
|
||||
else:
|
||||
torch_p.grad += torch.randn_like(torch_p, device=torch_p.device, dtype=g_dtype)
|
||||
|
||||
if p.grad is None:
|
||||
force_assign_grad(p, g_dtype)
|
||||
|
||||
if is_distributed_tensor(p):
|
||||
split_dim = get_shard_dim_1d(p)
|
||||
# Add grads only to the correctly split chunk
|
||||
force_assign_grad(p, g_dtype, torch_p.grad.chunk(world_size, dim=split_dim)[rank].contiguous())
|
||||
# assert_close(p.grad, torch_p.grad.chunk(world_size, dim=split_dim)[rank])
|
||||
else:
|
||||
force_assign_grad(p, g_dtype, torch_p.grad)
|
||||
|
||||
|
||||
@parameterize("p_g_dtype", _ALLOWED_P_G_TYPES)
|
||||
@parameterize("tp_zero_size", [(4, 1), (1, 4), (2, 2)])
|
||||
def run_dist_galore_basic(p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_size: tuple[int, int]) -> None:
|
||||
@ -158,7 +124,7 @@ def run_dist_galore_basic(p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_si
|
||||
|
||||
dist.get_rank(tp_group)
|
||||
seed_all(_SEED) # Fix model init
|
||||
torch_model = Net(in_dim=_IN_DIM, hid_dim=_HID_DIM, identity=True, dtype=p_dtype).to(rank)
|
||||
torch_model = Net(in_dim=_IN_DIM, hid_dim=_HID_DIM, dtype=p_dtype).to(rank)
|
||||
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group, dtype=p_dtype).to(rank)
|
||||
assert_distributed_close(tp_model, torch_model, rtol=0, atol=0, tp_group=tp_group)
|
||||
|
||||
@ -222,7 +188,7 @@ def run_dist_galore_fwd_bwd(p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_
|
||||
|
||||
seed_all(_SEED)
|
||||
clear_layout_converter() # Ensure correct sharding
|
||||
torch_model = Net(_IN_DIM, _HID_DIM, identity=True, dtype=p_dtype).to(rank)
|
||||
torch_model = Net(_IN_DIM, _HID_DIM, dtype=p_dtype).to(rank)
|
||||
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group, dtype=p_dtype).to(rank)
|
||||
assert_distributed_close(tp_model, torch_model, rtol=0, atol=0, tp_group=tp_group)
|
||||
|
||||
|
@ -14,7 +14,7 @@ from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_ad
|
||||
from colossalai.testing.random import seed_all
|
||||
from colossalai.zero import LowLevelZeroOptimizer
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_optimizer._utils import check_optim_states, run_bert_test
|
||||
from tests.test_optimizer._utils import check_optim_states, force_assign_grad, run_bert_test, setup_param_groups
|
||||
|
||||
_ALLOWED_P_G_TYPES = [
|
||||
(torch.float, torch.float), # pure fp32
|
||||
@ -49,29 +49,6 @@ def assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group):
|
||||
raise e
|
||||
|
||||
|
||||
def setup_param_groups(bert_model: nn.Module) -> list:
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in bert_model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.1,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in bert_model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
def force_assign_grad(p, g_dtype, grad=None):
|
||||
"""avoid inconsistent grad and param dtype error"""
|
||||
orig_p = p.data
|
||||
p.data = torch.randn_like(p, device=orig_p.device, dtype=g_dtype) if grad == None else grad
|
||||
p.grad = p.data
|
||||
p.data = orig_p
|
||||
|
||||
|
||||
def set_dist_grad(
|
||||
dist_module: nn.Module,
|
||||
torch_model: nn.Module,
|
||||
|
Loading…
Reference in New Issue
Block a user