mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 12:01:39 +00:00
[autochunk] support autochunk on evoformer (#2497)
This commit is contained in:
@@ -37,10 +37,10 @@ class EstimateMemory(object):
|
||||
|
||||
def _add_active_node(self, n, active_list):
|
||||
new_active = self._get_output_node(n)[1]
|
||||
if n.op == "placeholder":
|
||||
if n.op == "placeholder" and get_node_shape(n) is not None:
|
||||
new_active.append(n.name)
|
||||
for i in new_active:
|
||||
if i not in active_list:
|
||||
if i not in active_list and get_node_shape(n) is not None:
|
||||
active_list.append(i)
|
||||
|
||||
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
|
||||
@@ -77,15 +77,11 @@ class EstimateMemory(object):
|
||||
if i in active_list:
|
||||
active_list.remove(i)
|
||||
|
||||
def _get_chunk_inputs_size(
|
||||
self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx
|
||||
):
|
||||
def _get_chunk_inputs_size(self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx):
|
||||
nodes_to_delete = []
|
||||
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
|
||||
chunk_input_users = chunk_input.users.keys()
|
||||
chunk_input_users_idx = [
|
||||
find_idx_by_name(i.name, node_list) for i in chunk_input_users
|
||||
]
|
||||
chunk_input_users_idx = [find_idx_by_name(i.name, node_list) for i in chunk_input_users]
|
||||
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
|
||||
if chunk_input not in nodes_to_delete:
|
||||
nodes_to_delete.append(chunk_input)
|
||||
@@ -112,9 +108,7 @@ class EstimateMemory(object):
|
||||
not_contiguous_ops = ["permute"]
|
||||
inherit_contiguous_ops = ["transpose", "view"]
|
||||
|
||||
if node.op == "call_function" and any(
|
||||
n in node.name for n in ["matmul", "reshape"]
|
||||
):
|
||||
if node.op == "call_function" and any(n in node.name for n in ["matmul", "reshape"]):
|
||||
for n in node.args:
|
||||
if n in not_contiguous_list:
|
||||
# matmul won't change origin tensor, but create a tmp copy
|
||||
@@ -125,9 +119,7 @@ class EstimateMemory(object):
|
||||
# module will just make origin tensor to contiguous
|
||||
if delete:
|
||||
not_contiguous_list.remove(n)
|
||||
elif node.op == "call_method" and any(
|
||||
i in node.name for i in not_contiguous_ops
|
||||
):
|
||||
elif node.op == "call_method" and any(i in node.name for i in not_contiguous_ops):
|
||||
if node not in not_contiguous_list:
|
||||
not_contiguous_list.append(node)
|
||||
return mem
|
||||
@@ -142,9 +134,7 @@ class EstimateMemory(object):
|
||||
else:
|
||||
return float(chunk_size) / node_shape[chunk_dim]
|
||||
|
||||
def _get_chunk_delete_node_size(
|
||||
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
|
||||
):
|
||||
def _get_chunk_delete_node_size(self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names):
|
||||
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
|
||||
# return 0
|
||||
if user.op in ("placeholder", "output"):
|
||||
@@ -196,7 +186,7 @@ class EstimateMemory(object):
|
||||
Returns:
|
||||
act_memory_peak_log (List): peak memory of every node
|
||||
act_memory_after_node_log (List): memory after excuting every node
|
||||
active_node_list_log (List): active nodes of every node. active nodes refer to
|
||||
active_node_list_log (List): active nodes of every node. active nodes refer to
|
||||
nodes generated but not deleted.
|
||||
"""
|
||||
act_memory = 0.0
|
||||
@@ -212,7 +202,7 @@ class EstimateMemory(object):
|
||||
use_chunk = True if chunk_infos is not None else False
|
||||
chunk_within = False
|
||||
chunk_region_idx = None
|
||||
chunk_ratio = 1 # use it to estimate chunk mem
|
||||
chunk_ratio = 1 # use it to estimate chunk mem
|
||||
chunk_inputs_names = []
|
||||
|
||||
if use_chunk:
|
||||
@@ -221,23 +211,18 @@ class EstimateMemory(object):
|
||||
chunk_ends = [i[1] for i in chunk_regions]
|
||||
chunk_inputs = [i["inputs"] for i in chunk_infos]
|
||||
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
|
||||
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
||||
j.name for i in chunk_inputs_non_chunk for j in i
|
||||
]
|
||||
chunk_inputs_names = [j.name for i in chunk_inputs for j in i
|
||||
] + [j.name for i in chunk_inputs_non_chunk for j in i]
|
||||
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
||||
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos]
|
||||
chunk_sizes = [
|
||||
i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos
|
||||
]
|
||||
chunk_sizes = [i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos]
|
||||
|
||||
for idx, node in enumerate(node_list):
|
||||
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
|
||||
if use_chunk and idx in chunk_starts:
|
||||
chunk_within = True
|
||||
chunk_region_idx = chunk_starts.index(idx)
|
||||
act_memory += self._get_output_node_size(
|
||||
chunk_outputs[chunk_region_idx]
|
||||
) / (1024**2)
|
||||
act_memory += self._get_output_node_size(chunk_outputs[chunk_region_idx]) / (1024**2)
|
||||
|
||||
# determine chunk ratio for current node
|
||||
if chunk_within:
|
||||
@@ -262,22 +247,13 @@ class EstimateMemory(object):
|
||||
else:
|
||||
# forward memory
|
||||
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
|
||||
act_memory += (
|
||||
self._get_contiguous_memory(node, not_contiguous_list)
|
||||
* chunk_ratio
|
||||
/ (1024**2)
|
||||
)
|
||||
act_memory += (
|
||||
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
||||
)
|
||||
act_memory += (self._get_contiguous_memory(node, not_contiguous_list) * chunk_ratio / (1024**2))
|
||||
act_memory += (self._get_output_node_size(node) * chunk_ratio / (1024**2))
|
||||
# record max act memory
|
||||
act_memory_peak_log.append(act_memory)
|
||||
# delete useless memory
|
||||
act_memory -= (
|
||||
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
|
||||
* chunk_ratio
|
||||
/ (1024**2)
|
||||
)
|
||||
act_memory -= (self._get_contiguous_memory(node, not_contiguous_list, delete=True) * chunk_ratio /
|
||||
(1024**2))
|
||||
# delete unused vars not in chunk_input_list
|
||||
# we can't delete input nodes until chunk ends
|
||||
if chunk_within:
|
||||
@@ -288,9 +264,8 @@ class EstimateMemory(object):
|
||||
chunk_inputs_names,
|
||||
) / (1024**2)
|
||||
else:
|
||||
act_memory -= self._get_delete_node_size(
|
||||
node, user_to_last_uses_no_free_var, chunk_inputs_names
|
||||
) / (1024**2)
|
||||
act_memory -= self._get_delete_node_size(node, user_to_last_uses_no_free_var,
|
||||
chunk_inputs_names) / (1024**2)
|
||||
|
||||
# log active node, only effective without chunk
|
||||
self._add_active_node(node, active_node_list)
|
||||
@@ -298,9 +273,7 @@ class EstimateMemory(object):
|
||||
|
||||
# if node in chunk end nodes, restore chunk settings
|
||||
if use_chunk and idx in chunk_ends:
|
||||
act_memory -= (
|
||||
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
||||
)
|
||||
act_memory -= (self._get_output_node_size(node) * chunk_ratio / (1024**2))
|
||||
act_memory -= self._get_chunk_inputs_size(
|
||||
chunk_inputs[chunk_region_idx],
|
||||
chunk_inputs_non_chunk[chunk_region_idx],
|
||||
|
Reference in New Issue
Block a user