[pipeline/chimera] reconstruct PipelineBase and Worker to support more feasible custom schedule | finish Chimera (#1595)

* [pipeline/tuning] improve dispatch performance both time and space cost

* [pipeline/converge] add interface for testing convergence

* [NFC] polish colossalai/utils/multi_tensor_apply/multi_tensor_apply.py code style

* Update PipelineBase.py

* [pipeline/chimera] reconstruct PipelineBase and Worker to support more feasible custom schedule | finish Chimera
This commit is contained in:
Kirigaya Kazuto
2022-09-19 11:44:18 +08:00
committed by GitHub
parent c9e8ce67b8
commit edc9e419ad
8 changed files with 614 additions and 163 deletions

View File

@@ -0,0 +1,43 @@
import torch
from torch import nn
from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine, ChimeraPipelineEngine
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
def run_master(args):
torch.manual_seed(100)
epoch = args.epoch
device = args.device
stage_num = 4
chunk = 1
num_microbatches = 4
actual_stage_num = 4
use_checkpoint = False
sample_num = 1024
feat_num = 10
h = 10
batch_size = 1024
assert sample_num % batch_size == 0
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = ChimeraPipelineEngine(module_partitions=module_partitions,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
checkpoint=use_checkpoint)
input_sample = torch.randn((sample_num, feat_num), device=device)
for _ in range(epoch):
_ = engine.forward_backward(input_sample, forward_only=False)
if __name__ == "__main__":
args = parse_args()
args.world_size = 4
args.num_microbatches = 4
rpc_run(args, run_master)

View File

@@ -3,7 +3,7 @@ from torch import nn
from torch import autograd
from torch.optim import SGD, Adam, RMSprop, Optimizer
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.testing import assert_close
from rpc_test_utils import rpc_run, parse_args, RpcTestModel

View File

@@ -0,0 +1,102 @@
import os
from typing import Callable, List, Optional, Type, Union
import time
import pytest
import torch
import torch.nn as nn
from titans.dataloader.cifar10 import build_cifar
from torchvision.models import resnet50
from torchvision.models.resnet import BasicBlock, Bottleneck, conv1x1
from tqdm import tqdm
from rpc_test_utils import rpc_run, parse_args
import colossalai
import colossalai.nn as col_nn
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.trainer import Trainer, hooks
from colossalai.utils import MultiTimer, get_dataloader
from colossalai.context import ParallelMode
from colossalai.pipeline.pipelinable import PipelinableContext, PipelinableModel
from colossalai.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine
def flatten(x):
return torch.flatten(x, 1)
class Flatten(nn.Module):
def forward(self, x):
return torch.flatten(x, start_dim=1)
def run_master(args):
batch_size = args.batch_size
chunk = args.chunk
device = args.device
world_size = args.world_size
stage_num = world_size
num_microbatches = args.num_microbatches
assert chunk == 1
pipelinable = PipelinableContext()
# build model partitions
with pipelinable:
# input : [B, 3, 32, 32]
model = resnet50()
exec_seq = [
'conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'avgpool', (flatten, "behind"), 'fc'
]
pipelinable.to_layer_list(exec_seq)
module_partitions: List[PipelinableModel] = [
pipelinable.partition(chunk, stage_num, pp_rank) for pp_rank in range(world_size)
]
# build dataloader
root = os.environ.get('DATA', './data')
train_dataloader, test_dataloader = build_cifar(batch_size, root, padding=4, crop=32, resize=32)
criterion = nn.CrossEntropyLoss()
partition_1 = module_partitions[0]
partition_2 = []
for model in module_partitions[1]._module_list:
partition_2.append(model)
partition_2.insert(len(partition_2) - 1, Flatten())
partition_2 = nn.Sequential(*partition_2)
module_partitions = [partition_1, partition_2]
pp_engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
criterion=criterion,
checkpoint=False)
pp_engine.initialize_optimizer(torch.optim.Adam, lr=1e-3)
s = time.time()
for bx, by in tqdm(train_dataloader):
pp_engine.forward_backward(bx, labels=by, forward_only=False)
cost_time = time.time() - s
print("total cost time :", cost_time)
print("cost time per batch:", cost_time / len(train_dataloader))
@pytest.mark.skip("Test for performance, no need for CI")
def main():
args = parse_args()
# this is due to limitation of partition function
args.world_size = 2
args.chunk = 1
rpc_run(args, run_master)
if __name__ == '__main__':
main()

View File

@@ -1,7 +1,7 @@
import torch
from torch import nn
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine
from rpc_test_utils import rpc_run, parse_args, RpcTestModel

View File

@@ -2,7 +2,7 @@ import torch
from torch import nn
from torch import autograd
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.testing import assert_close
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
@@ -36,7 +36,7 @@ def run_master(args):
chunk=chunk,
checkpoint=use_checkpoint)
forward_result = engine.forward_backward(input_sample)
forward_result = engine.forward_backward(input_sample)[0]
cuda_rpc_result = []
single_result = []