[zero] adapt zero hooks for unsharded module (#699)

This commit is contained in:
HELSON
2022-04-08 20:23:26 +08:00
committed by GitHub
parent 896ade15d6
commit ee112fe1da
12 changed files with 71 additions and 59 deletions

View File

@@ -36,6 +36,7 @@ class ZeroHook(BaseOpHook):
self._stateful_tensor_mgr = stateful_tensor_mgr
def pre_fwd_exec(self, module: torch.nn.Module, *args):
for param in module.parameters(recurse=False):
param.colo_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
@@ -45,12 +46,15 @@ class ZeroHook(BaseOpHook):
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.colo_attr.sharded_data_tensor, self.computing_device)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
# gather sharded parameters
if module.param_is_sharded:
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
# record memory statistics
if self._memstarts_collector:
self._memstarts_collector.sample_memstats()
@@ -59,18 +63,25 @@ class ZeroHook(BaseOpHook):
assert param.data.device.type == 'cuda', f"PRE FWD param.data must be on CUDA"
def post_fwd_exec(self, module: torch.nn.Module, *args):
# change tensor state to HOLD_AFTER_FWD
for param in module.parameters(recurse=False):
param.colo_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_FWD)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
# shard gathered parameters
if module.param_is_sharded:
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
# remove torch payload
for param in module.parameters(recurse=False):
param.colo_attr.remove_torch_payload()
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
for param in module.parameters(recurse=False):
param.colo_attr.sharded_data_tensor.trans_state(TensorState.COMPUTE)
@@ -80,12 +91,15 @@ class ZeroHook(BaseOpHook):
for param in module.parameters(recurse=False):
colo_model_data_tensor_move_inline(param.colo_attr.sharded_data_tensor, self.computing_device)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
# gather sharded parameters
if module.param_is_sharded:
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.gather(tensor_list, self.process_group)
# record memory statistics
if self._memstarts_collector:
self._memstarts_collector.sample_memstats()
@@ -94,15 +108,20 @@ class ZeroHook(BaseOpHook):
assert param.data.device.type == 'cuda', f"PRE BWD param.data must be on CUDA"
def post_bwd_exec(self, module: torch.nn.Module, input):
# change tensor state to HOLD_AFTER_BWD
for param in module.parameters(recurse=False):
param.colo_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_BWD)
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
# shard gathered parameters
if module.param_is_sharded:
tensor_list = []
for param in module.parameters(recurse=False):
assert hasattr(param, 'colo_attr')
tensor_list.append(param.colo_attr.sharded_data_tensor)
self.shard_strategy.shard(tensor_list, self.process_group)
# remove torch payload
for param in module.parameters(recurse=False):
param.colo_attr.remove_torch_payload()

View File

@@ -135,8 +135,7 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
super().__init__()
self.shard_strategy = shard_strategy
self.sharded_param_list = []
self.unshard_param_list = []
self.param_list = []
self.model_numel_tensor = model_numel_tensor
self.seed = seed
self.dp_process_group = gpc.get_group(ParallelMode.DATA)
@@ -210,19 +209,15 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
def _post_context_exec(self):
"""The callback function when exiting context.
"""
for param in self.sharded_param_list:
# broadcast replicated no-shard parameters
src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[0]
for param in self.param_list:
assert hasattr(param, 'colo_attr')
if not param.colo_attr.param_is_sharded and param.is_replicated:
dist.broadcast(tensor=param.data, src=src_rank, group=self.dp_process_group)
param.colo_attr.remove_torch_payload()
del self.sharded_param_list
src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[0]
for param in self.unshard_param_list:
assert hasattr(param, 'colo_attr')
if param.is_replicated:
dist.broadcast(tensor=param.data, src=src_rank, group=self.dp_process_group)
del self.unshard_param_list
del self.param_list
nn.init._calculate_fan_in_and_fan_out = self.nn_fanin_fanout
torch.set_rng_state(self.cpu_rng_state)
@@ -264,10 +259,9 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
if self.shard_param:
self.shard_strategy.shard([param.colo_attr.sharded_data_tensor], self.dp_process_group)
param.data = param.colo_attr.sharded_data_tensor.payload
self.sharded_param_list.append(param)
else:
self.unshard_param_list.append(param)
param.data = param.colo_attr.sharded_data_tensor.payload # set param.data to payload
self.param_list.append(param)
# We must cast buffers
# If we use BN, buffers may be on CPU and Float

View File

@@ -121,7 +121,7 @@ class ShardedModelV2(nn.Module):
self._ophook_list = [
ZeroHook(self.shard_strategy, self._memstats_collector, self._stateful_tensor_mgr, self.process_group)
]
register_ophooks_recursively(self.module, self._ophook_list, filter_fn=lambda m: not m.param_is_sharded)
register_ophooks_recursively(self.module, self._ophook_list)
self.param_hook_mgr = BaseParamHookMgr(self.sharded_params)
self.param_hook_mgr.register_backward_hooks(self._grad_post_backward_hook)
@@ -366,14 +366,12 @@ class ShardedModelV2(nn.Module):
def state_dict(self, destination=None, prefix='', keep_vars=False) -> 'OrderedDict[str, torch.Tensor]':
self.shard_strategy.gather([p.colo_attr.sharded_data_tensor for p in self.sharded_params], self.process_group)
prev_params = {}
for p in self.sharded_params:
prev_params[p] = p.data
p.data = p.colo_attr.sharded_data_tensor.payload
gathered_state_dict = self.module.state_dict(destination, prefix, keep_vars)
self.shard_strategy.shard([p.colo_attr.sharded_data_tensor for p in self.sharded_params], self.process_group)
for p in self.sharded_params:
p.data = prev_params[p]
p.colo_attr.remove_torch_payload()
return gathered_state_dict
def load_state_dict(self, state_dict: 'OrderedDict[str, torch.Tensor]', strict: bool = True):

View File

@@ -268,10 +268,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
p.data = self.master_params[p].payload
p.colo_attr.sharded_data_tensor.reset_payload(
colo_model_tensor_clone(p.half(), torch.cuda.current_device()))
if not p.colo_attr.param_is_sharded:
# FIXME(hhc): add hook for unsharded parameters
p.data = p.colo_attr.sharded_data_tensor.payload
p.colo_attr.remove_torch_payload()
def sync_grad(self):
pass
@@ -351,10 +348,11 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
# TODO() optimize this line CPU (fp32) -> GPU (fp16)
p.colo_attr.sharded_data_tensor.reset_payload(
colo_model_tensor_clone(p.half(), p.colo_attr.sharded_data_tensor.device))
p.colo_attr.remove_torch_payload()
if not is_param_sharded and not self.keep_unshard:
# We gather full fp16 param here
self.shard_strategy.gather([p.colo_attr.sharded_data_tensor], self.dp_process_group)
p.data = p.colo_attr.sharded_data_tensor.payload
self.master_params[p].trans_state(TensorState.HOLD)
p.colo_attr.saved_grad.set_null()

View File

@@ -5,6 +5,11 @@ from colossalai.zero.shard_utils.tensor_utils import colo_tensor_mem_usage
from .tensorful_state import StatefulTensor, TensorState
from typing import List
# use this tensor as empty data point for parameters
# we do not want users use param.data when its torch payload is removed
# empty tensor is expected to raise error when get used
FAKE_EMPTY_TENSOR = torch.BoolTensor([], device='cpu')
class ShardedParamV2(object):
@@ -29,7 +34,7 @@ class ShardedParamV2(object):
return [self._sharded_data_tensor]
def remove_torch_payload(self):
self.param.data = torch.empty([], dtype=self.param.dtype, device=self.param.device)
self.param.data = FAKE_EMPTY_TENSOR.to(self._sharded_data_tensor.device, self._sharded_data_tensor.dtype)
@property
def sharded_data_tensor(self):