mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-13 13:45:51 +00:00
address conversation
This commit is contained in:
parent
58f8c9bb43
commit
ee939d9aa5
@ -118,48 +118,49 @@ class BaseConsumer:
|
||||
for r in range(self.num_producers):
|
||||
print(f"[T{dist.get_rank()}] Recv data episode {episode} step {step} from {r}")
|
||||
raw_batch = ray_broadcast_tensor_dict(None, src=0, device=self.device, group_name=f"sync_data_{r}")
|
||||
recv_effective_count = 0
|
||||
# calculate group reward et al. filtering. As only the filtered group will be used for training (which is incomplete),
|
||||
# we need to calculate the metrics before filtering here for logging
|
||||
raw_batch_with_reward = unbind_batch(self.calculate_reward(raw_batch))
|
||||
for group_with_reward in raw_batch_with_reward:
|
||||
group_reward_mean = group_with_reward["reward"].mean().cpu().item()
|
||||
group_format_acc_mean = group_with_reward["format_acc"].mean().cpu().item()
|
||||
group_ans_acc_mean = group_with_reward["ans_acc"].mean().cpu().item()
|
||||
group_response_len = (
|
||||
(
|
||||
group_with_reward["response_idx"][:, 1]
|
||||
- group_with_reward["response_idx"][:, 0]
|
||||
+ 1
|
||||
)
|
||||
.type(torch.float32)
|
||||
.mean()
|
||||
.cpu()
|
||||
.item()
|
||||
# [batch_size, num_generations, ...] -> [batch_size * num_generations, ...]
|
||||
raw_batch_with_reward = self.calculate_reward({k:v.view(-1, v.size(-1)) if k!='temperature' else v for k, v in raw_batch.items()})
|
||||
raw_batch_with_reward = {k: v.view(-1, self.num_generations, v.size(-1)) if k!='temperature' else v for k, v in raw_batch_with_reward.items()}
|
||||
# [batch_size, num_generations] -> [batch_size]
|
||||
group_reward_mean = raw_batch_with_reward["reward"][:,:,0].mean(dim=-1)
|
||||
group_format_acc_mean = raw_batch_with_reward["format_acc"][:,:,0].mean(dim=-1)
|
||||
group_ans_acc_mean = raw_batch_with_reward["ans_acc"][:,:,0].mean(dim=-1)
|
||||
group_response_len = (
|
||||
(raw_batch_with_reward["response_idx"][:, :, 1] - raw_batch_with_reward["response_idx"][:, :, 0] + 1)
|
||||
.type(torch.float32)
|
||||
.mean(dim=-1)
|
||||
)
|
||||
effective_group_mask = None
|
||||
if self.filter_range is not None and self.grpo_config.get("dynamic_batching", True):
|
||||
# filter the group based on the reward and accuracy
|
||||
effective_group_mask = torch.logical_and(
|
||||
group_ans_acc_mean > self.filter_range[0], group_ans_acc_mean < self.filter_range[1]
|
||||
)
|
||||
if self.grpo_config.get("dynamic_batching", True):
|
||||
filtered_group = self.prompt_level_filtering(group_with_reward)
|
||||
recv_effective_count += 1 if filtered_group is not None else 0
|
||||
raw_batch_with_reward = unbind_batch(raw_batch_with_reward) # List[Dict[str, torch.Tensor]]
|
||||
for group_idx, group_with_reward in enumerate(raw_batch_with_reward):
|
||||
self.buffer.append(
|
||||
[
|
||||
filtered_group,
|
||||
group_reward_mean,
|
||||
group_format_acc_mean,
|
||||
group_ans_acc_mean,
|
||||
group_response_len,
|
||||
group_with_reward if effective_group_mask is None or effective_group_mask[group_idx] else None,
|
||||
group_reward_mean[group_idx],
|
||||
group_format_acc_mean[group_idx],
|
||||
group_ans_acc_mean[group_idx],
|
||||
group_response_len[group_idx],
|
||||
]
|
||||
)
|
||||
if self.filter_range is not None:
|
||||
if effective_group_mask is not None:
|
||||
print(
|
||||
f"[T{dist.get_rank()}] Filter recv data: {len(raw_batch)} -> {recv_effective_count}"
|
||||
f"[T{dist.get_rank()}] Filter recv data: {len(raw_batch)} -> {torch.sum(effective_group_mask).cpu().item()} effective groups"
|
||||
)
|
||||
# mapping the effective group to the raw group for indexing
|
||||
effective_group_to_raw_group_mapping = {}
|
||||
for buffer_idx in range(len(self.buffer)):
|
||||
if self.buffer[buffer_idx][0] is not None:
|
||||
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
|
||||
buffer_idx
|
||||
)
|
||||
# mapping the effective group to the raw group for indexing
|
||||
effective_group_to_raw_group_mapping = {}
|
||||
for buffer_idx in range(len(self.buffer)):
|
||||
if self.buffer[buffer_idx][0] is not None:
|
||||
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
|
||||
buffer_idx
|
||||
)
|
||||
pbar.set_postfix({"Collect Effective Prompt": f"{len(effective_group_to_raw_group_mapping)}/{self.dp_size * self.minibatch_size}"})
|
||||
|
||||
while len(effective_group_to_raw_group_mapping) >= self.dp_size * self.minibatch_size:
|
||||
# on each dp_rank, we use minibatch_size effective samples to form a batch
|
||||
|
@ -84,7 +84,6 @@ class GRPOConsumer(BaseConsumer):
|
||||
self.project_name = project_name
|
||||
self.effective_sample_count = 0
|
||||
self.effective_prompt_count = 0
|
||||
self.total_sample_count = 0
|
||||
self.project_name = project_name
|
||||
self.run_name = run_name
|
||||
self.wandb_group_name = wandb_group_name
|
||||
@ -429,11 +428,9 @@ class GRPOConsumer(BaseConsumer):
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
self.global_step += 1
|
||||
# no need to run all_reduce_sum on total_sample_count, because all dp ranks recieves a complete inference batch from all producers.
|
||||
sample_utilization = self.effective_sample_count / self.total_sample_count
|
||||
sample_utilization = self.effective_sample_count / len(self.raw_train_batch_reward) / self.num_generations
|
||||
self.effective_prompt_count = 0
|
||||
self.effective_sample_count = 0
|
||||
self.total_sample_count = 0
|
||||
loss_scalar = self.accum_loss.item()
|
||||
if not self.plugin.pp_size > 1 or (
|
||||
self.plugin.pp_size > 1 and self.booster.plugin.stage_manager.is_last_stage() and self.tp_rank == 0
|
||||
@ -520,35 +517,6 @@ class GRPOConsumer(BaseConsumer):
|
||||
rollout["ans_acc"] = ans_acc.view((-1, 1))
|
||||
return rollout
|
||||
|
||||
def prompt_level_filtering(self, rollout_group: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
rollout_group: Dict[str, Any]
|
||||
a group of samples generated by the model from the same prompt
|
||||
contain the following keys:
|
||||
"input_ids": torch.Tensor, [num_of_generation, prompt_length + response_length]
|
||||
"attention_mask": torch.Tensor, [num_of_generation, prompt_length + response_length]
|
||||
"action_mask": torch.Tensor, [num_of_generation, response_length]
|
||||
"action_log_probs": torch.Tensor, [num_of_generation, response_length]
|
||||
"response_idx": int, torch.Tensor, [num_of_generation, 2]
|
||||
"gt_answer": torch.Tensor, [num_of_generation, 128]
|
||||
"temperature": torch.Tensor, [] (scalar)
|
||||
"reward": torch.Tensor, [num_of_generation]
|
||||
"format_acc": torch.Tensor, [num_of_generation]
|
||||
"ans_acc": torch.Tensor, [num_of_generation]
|
||||
"""
|
||||
self.total_sample_count += rollout_group["input_ids"].size(0)
|
||||
if self.filter_range is not None:
|
||||
# filter prompt whoes accuracy is too high or too low (out of range)
|
||||
group_ans_acc = torch.mean(rollout_group["ans_acc"])
|
||||
if group_ans_acc < self.filter_range[0] or group_ans_acc > self.filter_range[1]:
|
||||
# filter out the prompt
|
||||
return None
|
||||
else:
|
||||
return rollout_group
|
||||
else:
|
||||
# no filter
|
||||
return rollout_group
|
||||
|
||||
def state_dict(self):
|
||||
self.policy_model._force_wait_all_gather()
|
||||
model = self.policy_model.unwrap()
|
||||
|
@ -248,11 +248,10 @@ class BaseProducer:
|
||||
self.eval_mode = False
|
||||
self.latest_eval_step = self.consumer_global_step
|
||||
outputs = self.rollout(**batch)
|
||||
|
||||
print(f"[P{self.producer_idx}] Send data {[(k, v.shape) for k, v in outputs.items()]}")
|
||||
outputs["temperature"] = torch.tensor(
|
||||
[self.model.generate_config["temperature"]] * outputs["input_ids"].size(0)
|
||||
).to(outputs["input_ids"].device)
|
||||
print(f"[P{self.producer_idx}] Send data {[(k, v.shape) for k, v in outputs.items()]}")
|
||||
outputs = pre_send(outputs)
|
||||
ray_broadcast_tensor_dict(
|
||||
outputs, src=0, device=self.device, group_name=f"sync_data_{self.producer_idx}"
|
||||
|
Loading…
Reference in New Issue
Block a user