mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 09:38:05 +00:00
[example] reorganize for community examples (#3557)
This commit is contained in:
130
examples/community/roberta/pretraining/utils/global_vars.py
Normal file
130
examples/community/roberta/pretraining/utils/global_vars.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import time
|
||||
|
||||
import torch
|
||||
|
||||
from .WandbLog import TensorboardLog
|
||||
|
||||
_GLOBAL_TIMERS = None
|
||||
_GLOBAL_TENSORBOARD_WRITER = None
|
||||
|
||||
|
||||
def set_global_variables(launch_time, tensorboard_path):
|
||||
_set_timers()
|
||||
_set_tensorboard_writer(launch_time, tensorboard_path)
|
||||
|
||||
|
||||
def _set_timers():
|
||||
"""Initialize timers."""
|
||||
global _GLOBAL_TIMERS
|
||||
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
|
||||
_GLOBAL_TIMERS = Timers()
|
||||
|
||||
|
||||
def _set_tensorboard_writer(launch_time, tensorboard_path):
|
||||
"""Set tensorboard writer."""
|
||||
global _GLOBAL_TENSORBOARD_WRITER
|
||||
_ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER, 'tensorboard writer')
|
||||
if torch.distributed.get_rank() == 0:
|
||||
_GLOBAL_TENSORBOARD_WRITER = TensorboardLog(tensorboard_path + f'/{launch_time}', launch_time)
|
||||
|
||||
|
||||
def get_timers():
|
||||
"""Return timers."""
|
||||
_ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers')
|
||||
return _GLOBAL_TIMERS
|
||||
|
||||
|
||||
def get_tensorboard_writer():
|
||||
"""Return tensorboard writer. It can be None so no need
|
||||
to check if it is initialized."""
|
||||
return _GLOBAL_TENSORBOARD_WRITER
|
||||
|
||||
|
||||
def _ensure_var_is_initialized(var, name):
|
||||
"""Make sure the input variable is not None."""
|
||||
assert var is not None, '{} is not initialized.'.format(name)
|
||||
|
||||
|
||||
def _ensure_var_is_not_initialized(var, name):
|
||||
"""Make sure the input variable is not None."""
|
||||
assert var is None, '{} is already initialized.'.format(name)
|
||||
|
||||
|
||||
class _Timer:
|
||||
"""Timer."""
|
||||
|
||||
def __init__(self, name):
|
||||
self.name_ = name
|
||||
self.elapsed_ = 0.0
|
||||
self.started_ = False
|
||||
self.start_time = time.time()
|
||||
|
||||
def start(self):
|
||||
"""Start the timer."""
|
||||
# assert not self.started_, 'timer has already been started'
|
||||
torch.cuda.synchronize()
|
||||
self.start_time = time.time()
|
||||
self.started_ = True
|
||||
|
||||
def stop(self):
|
||||
"""Stop the timer."""
|
||||
assert self.started_, 'timer is not started'
|
||||
torch.cuda.synchronize()
|
||||
self.elapsed_ += (time.time() - self.start_time)
|
||||
self.started_ = False
|
||||
|
||||
def reset(self):
|
||||
"""Reset timer."""
|
||||
self.elapsed_ = 0.0
|
||||
self.started_ = False
|
||||
|
||||
def elapsed(self, reset=True):
|
||||
"""Calculate the elapsed time."""
|
||||
started_ = self.started_
|
||||
# If the timing in progress, end it first.
|
||||
if self.started_:
|
||||
self.stop()
|
||||
# Get the elapsed time.
|
||||
elapsed_ = self.elapsed_
|
||||
# Reset the elapsed time
|
||||
if reset:
|
||||
self.reset()
|
||||
# If timing was in progress, set it back.
|
||||
if started_:
|
||||
self.start()
|
||||
return elapsed_
|
||||
|
||||
|
||||
class Timers:
|
||||
"""Group of timers."""
|
||||
|
||||
def __init__(self):
|
||||
self.timers = {}
|
||||
|
||||
def __call__(self, name):
|
||||
if name not in self.timers:
|
||||
self.timers[name] = _Timer(name)
|
||||
return self.timers[name]
|
||||
|
||||
def write(self, names, writer, iteration, normalizer=1.0, reset=False):
|
||||
"""Write timers to a tensorboard writer"""
|
||||
# currently when using add_scalars,
|
||||
# torch.utils.add_scalars makes each timer its own run, which
|
||||
# polutes the runs list, so we just add each as a scalar
|
||||
assert normalizer > 0.0
|
||||
for name in names:
|
||||
value = self.timers[name].elapsed(reset=reset) / normalizer
|
||||
writer.add_scalar(name + '-time', value, iteration)
|
||||
|
||||
def log(self, names, normalizer=1.0, reset=True):
|
||||
"""Log a group of timers."""
|
||||
assert normalizer > 0.0
|
||||
string = 'time (ms)'
|
||||
for name in names:
|
||||
elapsed_time = self.timers[name].elapsed(reset=reset) * 1000.0 / normalizer
|
||||
string += ' | {}: {:.2f}'.format(name, elapsed_time)
|
||||
if torch.distributed.is_initialized():
|
||||
if torch.distributed.get_rank() == (torch.distributed.get_world_size() - 1):
|
||||
print(string, flush=True)
|
||||
else:
|
||||
print(string, flush=True)
|
Reference in New Issue
Block a user