[NFC] polish colossalai/kernel/cuda_native/csrc/multi_tensor_sgd_kernel.cu code style (#978)

This commit is contained in:
binmakeswell 2022-05-16 14:09:01 +08:00
parent 18542b47fc
commit f28c021376

View File

@ -1,14 +1,15 @@
// modified from https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu // modified from
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu
#include <ATen/ATen.h> #include <ATen/ATen.h>
#include <ATen/AccumulateType.h> #include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h> #include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h> #include <ATen/cuda/Exceptions.h>
#include "multi_tensor_apply.cuh"
#include "compat.h"
#include <assert.h> #include <assert.h>
#include <cuda_runtime.h> #include <cuda_runtime.h>
#include "compat.h"
#include "multi_tensor_apply.cuh"
#define BLOCK_SIZE 512 #define BLOCK_SIZE 512
#define ILP 4 #define ILP 4
@ -28,24 +29,13 @@
* wd_after_momentum : apply weight decay _after_ momentum instead of before * wd_after_momentum : apply weight decay _after_ momentum instead of before
**/ **/
template <int N, typename T_grad, typename T_weight> template <int N, typename T_grad, typename T_weight>
struct SGDFunctor struct SGDFunctor {
{
__device__ __forceinline__ void operator()( __device__ __forceinline__ void operator()(
int chunk_size, int chunk_size, volatile int *noop_gmem, TensorListMetadata<N> &tl,
volatile int *noop_gmem, float wd, float momentum, float dampening, float lr, bool nesterov,
TensorListMetadata<N> &tl, bool first_run, bool wd_after_momentum, float scale) {
float wd,
float momentum,
float dampening,
float lr,
bool nesterov,
bool first_run,
bool wd_after_momentum,
float scale)
{
// Early exit if we don't need to do anything // Early exit if we don't need to do anything
if (*noop_gmem) if (*noop_gmem) return;
return;
int tensor_loc = tl.block_to_tensor[blockIdx.x]; int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x]; int chunk_idx = tl.block_to_chunk[blockIdx.x];
@ -61,8 +51,7 @@ struct SGDFunctor
mom_in += chunk_idx * chunk_size; mom_in += chunk_idx * chunk_size;
at::Half *model_weights_out = nullptr; at::Half *model_weights_out = nullptr;
if (N == 4) if (N == 4) {
{
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc]; model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
model_weights_out += chunk_idx * chunk_size; model_weights_out += chunk_idx * chunk_size;
} }
@ -73,19 +62,15 @@ struct SGDFunctor
float incoming_grads[ILP]; float incoming_grads[ILP];
float incoming_weights[ILP]; float incoming_weights[ILP];
float incoming_moms[ILP]; float incoming_moms[ILP];
for (int i_start = 0; for (int i_start = 0; i_start < n && i_start < chunk_size;
i_start < n && i_start < chunk_size; i_start += blockDim.x * ILP) {
i_start += blockDim.x * ILP)
{
#pragma unroll #pragma unroll
for (int ii = 0; ii < ILP; ii++) for (int ii = 0; ii < ILP; ii++) {
{
incoming_grads[ii] = 0; incoming_grads[ii] = 0;
incoming_weights[ii] = 0; incoming_weights[ii] = 0;
incoming_moms[ii] = 0; incoming_moms[ii] = 0;
int i = i_start + threadIdx.x + ii * blockDim.x; int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size) if (i < n && i < chunk_size) {
{
incoming_grads[ii] = static_cast<float>(grad_in[i]) * scale; incoming_grads[ii] = static_cast<float>(grad_in[i]) * scale;
incoming_weights[ii] = static_cast<float>(weight_in[i]); incoming_weights[ii] = static_cast<float>(weight_in[i]);
incoming_moms[ii] = static_cast<float>(mom_in[i]); incoming_moms[ii] = static_cast<float>(mom_in[i]);
@ -98,19 +83,17 @@ struct SGDFunctor
// Put another way, the STGs are dependent on the LDGs, but not on each other. // Put another way, the STGs are dependent on the LDGs, but not on each other.
// There is still compute ILP benefit from unrolling the loop though. // There is still compute ILP benefit from unrolling the loop though.
#pragma unroll #pragma unroll
for (int ii = 0; ii < ILP; ii++) for (int ii = 0; ii < ILP; ii++) {
{
int i = i_start + threadIdx.x + ii * blockDim.x; int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size) if (i < n && i < chunk_size) {
{
// apply weight decay before momentum if necessary // apply weight decay before momentum if necessary
if (wd != 0.f && !wd_after_momentum) if (wd != 0.f && !wd_after_momentum)
incoming_grads[ii] += wd * incoming_weights[ii]; incoming_grads[ii] += wd * incoming_weights[ii];
if (momentum != 0.f) if (momentum != 0.f) {
{
if (!first_run) if (!first_run)
incoming_moms[ii] = incoming_moms[ii] * momentum + (1.f - dampening) * incoming_grads[ii]; incoming_moms[ii] = incoming_moms[ii] * momentum +
(1.f - dampening) * incoming_grads[ii];
else // initialize momentums to current incoming grads else // initialize momentums to current incoming grads
incoming_moms[ii] = incoming_grads[ii]; incoming_moms[ii] = incoming_grads[ii];
@ -132,27 +115,18 @@ struct SGDFunctor
model_weights_out[i] = static_cast<at::Half>(weight_in[i]); model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
// also write out the new momentum // also write out the new momentum
if (momentum != 0.f) if (momentum != 0.f) mom_in[i] = incoming_moms[ii];
mom_in[i] = incoming_moms[ii];
} }
} }
} }
} }
}; };
void multi_tensor_sgd_cuda( void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists, std::vector<std::vector<at::Tensor>> tensor_lists,
float wd, float wd, float momentum, float dampening, float lr,
float momentum, bool nesterov, bool first_run,
float dampening, bool wd_after_momentum, float scale) {
float lr,
bool nesterov,
bool first_run,
bool wd_after_momentum,
float scale)
{
auto num_tensors = tensor_lists.size(); auto num_tensors = tensor_lists.size();
auto grad_type = tensor_lists[0][0].scalar_type(); auto grad_type = tensor_lists[0][0].scalar_type();
auto weight_type = tensor_lists[1][0].scalar_type(); auto weight_type = tensor_lists[1][0].scalar_type();
@ -162,7 +136,8 @@ void multi_tensor_sgd_cuda(
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half, TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
"Additional output tensors should always be fp16."); "Additional output tensors should always be fp16.");
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(), "expected noop flag to be on the same device as tensors"); TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(),
"expected noop flag to be on the same device as tensors");
// We have 3 possibilities to handle here, in terms of // We have 3 possibilities to handle here, in terms of
// grad_type, param_type, momentum_type, requires_fp16_copy // grad_type, param_type, momentum_type, requires_fp16_copy
@ -176,22 +151,10 @@ void multi_tensor_sgd_cuda(
// Case 1. fp16, fp16, fp16, No // Case 1. fp16, fp16, fp16, No
if (grad_type == at::ScalarType::Half && if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Half && weight_type == at::ScalarType::Half && num_tensors == 3) {
num_tensors == 3) multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
{ SGDFunctor<3, at::Half, at::Half>(), wd, momentum,
multi_tensor_apply<3>( dampening, lr, nesterov, first_run, wd_after_momentum,
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<3, at::Half, at::Half>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale); scale);
} }
// Case 2. fp16, fp32, fp32, No // Case 2. fp16, fp32, fp32, No
@ -214,68 +177,33 @@ void multi_tensor_sgd_cuda(
// } // }
// Case 2. fp32, fp32, fp32, No // Case 2. fp32, fp32, fp32, No
else if (grad_type == at::ScalarType::Float && else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float && weight_type == at::ScalarType::Float && num_tensors == 3) {
num_tensors == 3) multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
{ SGDFunctor<3, float, float>(), wd, momentum,
multi_tensor_apply<3>( dampening, lr, nesterov, first_run, wd_after_momentum,
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<3, float, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale); scale);
} }
// Case 3. fp16, fp32, fp32, Yes // Case 3. fp16, fp32, fp32, Yes
else if (grad_type == at::ScalarType::Half && else if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Float && weight_type == at::ScalarType::Float && num_tensors == 4) {
num_tensors == 4) multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
{ SGDFunctor<4, at::Half, float>(), wd, momentum,
multi_tensor_apply<4>( dampening, lr, nesterov, first_run, wd_after_momentum,
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<4, at::Half, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale); scale);
} }
// Case 4. fp32, fp32, fp32, Yes // Case 4. fp32, fp32, fp32, Yes
else if (grad_type == at::ScalarType::Float && else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float && weight_type == at::ScalarType::Float && num_tensors == 4) {
num_tensors == 4) multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
{ SGDFunctor<4, float, float>(), wd, momentum,
multi_tensor_apply<4>( dampening, lr, nesterov, first_run, wd_after_momentum,
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<4, float, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale); scale);
} } else {
else AT_ERROR(
{ "multi_tensor_sgd only supports some combinations of gradient & weight "
AT_ERROR("multi_tensor_sgd only supports some combinations of gradient & weight types. Given: ", "types. Given: ",
"gradient: ", grad_type, ", weight: ", weight_type, ", num_lists: ", num_tensors); "gradient: ", grad_type, ", weight: ", weight_type,
", num_lists: ", num_tensors);
} }
AT_CUDA_CHECK(cudaGetLastError()); AT_CUDA_CHECK(cudaGetLastError());