[NFC] polish colossalai/kernel/cuda_native/csrc/multi_tensor_sgd_kernel.cu code style (#978)

This commit is contained in:
binmakeswell 2022-05-16 14:09:01 +08:00
parent 18542b47fc
commit f28c021376

View File

@ -1,14 +1,15 @@
// modified from https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu
// modified from
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
#include "multi_tensor_apply.cuh"
#include "compat.h"
#include <assert.h>
#include <cuda_runtime.h>
#include "compat.h"
#include "multi_tensor_apply.cuh"
#define BLOCK_SIZE 512
#define ILP 4
@ -28,24 +29,13 @@
* wd_after_momentum : apply weight decay _after_ momentum instead of before
**/
template <int N, typename T_grad, typename T_weight>
struct SGDFunctor
{
struct SGDFunctor {
__device__ __forceinline__ void operator()(
int chunk_size,
volatile int *noop_gmem,
TensorListMetadata<N> &tl,
float wd,
float momentum,
float dampening,
float lr,
bool nesterov,
bool first_run,
bool wd_after_momentum,
float scale)
{
int chunk_size, volatile int *noop_gmem, TensorListMetadata<N> &tl,
float wd, float momentum, float dampening, float lr, bool nesterov,
bool first_run, bool wd_after_momentum, float scale) {
// Early exit if we don't need to do anything
if (*noop_gmem)
return;
if (*noop_gmem) return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
@ -61,8 +51,7 @@ struct SGDFunctor
mom_in += chunk_idx * chunk_size;
at::Half *model_weights_out = nullptr;
if (N == 4)
{
if (N == 4) {
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
model_weights_out += chunk_idx * chunk_size;
}
@ -73,19 +62,15 @@ struct SGDFunctor
float incoming_grads[ILP];
float incoming_weights[ILP];
float incoming_moms[ILP];
for (int i_start = 0;
i_start < n && i_start < chunk_size;
i_start += blockDim.x * ILP)
{
for (int i_start = 0; i_start < n && i_start < chunk_size;
i_start += blockDim.x * ILP) {
#pragma unroll
for (int ii = 0; ii < ILP; ii++)
{
for (int ii = 0; ii < ILP; ii++) {
incoming_grads[ii] = 0;
incoming_weights[ii] = 0;
incoming_moms[ii] = 0;
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size)
{
if (i < n && i < chunk_size) {
incoming_grads[ii] = static_cast<float>(grad_in[i]) * scale;
incoming_weights[ii] = static_cast<float>(weight_in[i]);
incoming_moms[ii] = static_cast<float>(mom_in[i]);
@ -98,19 +83,17 @@ struct SGDFunctor
// Put another way, the STGs are dependent on the LDGs, but not on each other.
// There is still compute ILP benefit from unrolling the loop though.
#pragma unroll
for (int ii = 0; ii < ILP; ii++)
{
for (int ii = 0; ii < ILP; ii++) {
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size)
{
if (i < n && i < chunk_size) {
// apply weight decay before momentum if necessary
if (wd != 0.f && !wd_after_momentum)
incoming_grads[ii] += wd * incoming_weights[ii];
if (momentum != 0.f)
{
if (momentum != 0.f) {
if (!first_run)
incoming_moms[ii] = incoming_moms[ii] * momentum + (1.f - dampening) * incoming_grads[ii];
incoming_moms[ii] = incoming_moms[ii] * momentum +
(1.f - dampening) * incoming_grads[ii];
else // initialize momentums to current incoming grads
incoming_moms[ii] = incoming_grads[ii];
@ -132,27 +115,18 @@ struct SGDFunctor
model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
// also write out the new momentum
if (momentum != 0.f)
mom_in[i] = incoming_moms[ii];
if (momentum != 0.f) mom_in[i] = incoming_moms[ii];
}
}
}
}
};
void multi_tensor_sgd_cuda(
int chunk_size,
at::Tensor noop_flag,
void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float wd,
float momentum,
float dampening,
float lr,
bool nesterov,
bool first_run,
bool wd_after_momentum,
float scale)
{
float wd, float momentum, float dampening, float lr,
bool nesterov, bool first_run,
bool wd_after_momentum, float scale) {
auto num_tensors = tensor_lists.size();
auto grad_type = tensor_lists[0][0].scalar_type();
auto weight_type = tensor_lists[1][0].scalar_type();
@ -162,7 +136,8 @@ void multi_tensor_sgd_cuda(
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
"Additional output tensors should always be fp16.");
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(), "expected noop flag to be on the same device as tensors");
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(),
"expected noop flag to be on the same device as tensors");
// We have 3 possibilities to handle here, in terms of
// grad_type, param_type, momentum_type, requires_fp16_copy
@ -176,22 +151,10 @@ void multi_tensor_sgd_cuda(
// Case 1. fp16, fp16, fp16, No
if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Half &&
num_tensors == 3)
{
multi_tensor_apply<3>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<3, at::Half, at::Half>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
weight_type == at::ScalarType::Half && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<3, at::Half, at::Half>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
}
// Case 2. fp16, fp32, fp32, No
@ -214,68 +177,33 @@ void multi_tensor_sgd_cuda(
// }
// Case 2. fp32, fp32, fp32, No
else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float &&
num_tensors == 3)
{
multi_tensor_apply<3>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<3, float, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
weight_type == at::ScalarType::Float && num_tensors == 3) {
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<3, float, float>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
}
// Case 3. fp16, fp32, fp32, Yes
else if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Float &&
num_tensors == 4)
{
multi_tensor_apply<4>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<4, at::Half, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
weight_type == at::ScalarType::Float && num_tensors == 4) {
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<4, at::Half, float>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
}
// Case 4. fp32, fp32, fp32, Yes
else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float &&
num_tensors == 4)
{
multi_tensor_apply<4>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<4, float, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
weight_type == at::ScalarType::Float && num_tensors == 4) {
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
SGDFunctor<4, float, float>(), wd, momentum,
dampening, lr, nesterov, first_run, wd_after_momentum,
scale);
}
else
{
AT_ERROR("multi_tensor_sgd only supports some combinations of gradient & weight types. Given: ",
"gradient: ", grad_type, ", weight: ", weight_type, ", num_lists: ", num_tensors);
} else {
AT_ERROR(
"multi_tensor_sgd only supports some combinations of gradient & weight "
"types. Given: ",
"gradient: ", grad_type, ", weight: ", weight_type,
", num_lists: ", num_tensors);
}
AT_CUDA_CHECK(cudaGetLastError());