mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-30 09:12:11 +00:00
[NFC] polish colossalai/kernel/cuda_native/csrc/multi_tensor_sgd_kernel.cu code style (#978)
This commit is contained in:
parent
18542b47fc
commit
f28c021376
@ -1,14 +1,15 @@
|
||||
// modified from https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu
|
||||
// modified from
|
||||
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/AccumulateType.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include "multi_tensor_apply.cuh"
|
||||
#include "compat.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include "compat.h"
|
||||
#include "multi_tensor_apply.cuh"
|
||||
|
||||
#define BLOCK_SIZE 512
|
||||
#define ILP 4
|
||||
|
||||
@ -28,69 +29,53 @@
|
||||
* wd_after_momentum : apply weight decay _after_ momentum instead of before
|
||||
**/
|
||||
template <int N, typename T_grad, typename T_weight>
|
||||
struct SGDFunctor
|
||||
{
|
||||
__device__ __forceinline__ void operator()(
|
||||
int chunk_size,
|
||||
volatile int *noop_gmem,
|
||||
TensorListMetadata<N> &tl,
|
||||
float wd,
|
||||
float momentum,
|
||||
float dampening,
|
||||
float lr,
|
||||
bool nesterov,
|
||||
bool first_run,
|
||||
bool wd_after_momentum,
|
||||
float scale)
|
||||
{
|
||||
// Early exit if we don't need to do anything
|
||||
if (*noop_gmem)
|
||||
return;
|
||||
struct SGDFunctor {
|
||||
__device__ __forceinline__ void operator()(
|
||||
int chunk_size, volatile int *noop_gmem, TensorListMetadata<N> &tl,
|
||||
float wd, float momentum, float dampening, float lr, bool nesterov,
|
||||
bool first_run, bool wd_after_momentum, float scale) {
|
||||
// Early exit if we don't need to do anything
|
||||
if (*noop_gmem) return;
|
||||
|
||||
int tensor_loc = tl.block_to_tensor[blockIdx.x];
|
||||
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
||||
int n = tl.sizes[tensor_loc];
|
||||
int tensor_loc = tl.block_to_tensor[blockIdx.x];
|
||||
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
||||
int n = tl.sizes[tensor_loc];
|
||||
|
||||
T_grad *grad_in = (T_grad *)tl.addresses[0][tensor_loc];
|
||||
grad_in += chunk_idx * chunk_size;
|
||||
T_grad *grad_in = (T_grad *)tl.addresses[0][tensor_loc];
|
||||
grad_in += chunk_idx * chunk_size;
|
||||
|
||||
T_weight *weight_in = (T_weight *)tl.addresses[1][tensor_loc];
|
||||
weight_in += chunk_idx * chunk_size;
|
||||
T_weight *weight_in = (T_weight *)tl.addresses[1][tensor_loc];
|
||||
weight_in += chunk_idx * chunk_size;
|
||||
|
||||
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc];
|
||||
mom_in += chunk_idx * chunk_size;
|
||||
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc];
|
||||
mom_in += chunk_idx * chunk_size;
|
||||
|
||||
at::Half *model_weights_out = nullptr;
|
||||
if (N == 4)
|
||||
{
|
||||
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
|
||||
model_weights_out += chunk_idx * chunk_size;
|
||||
}
|
||||
at::Half *model_weights_out = nullptr;
|
||||
if (N == 4) {
|
||||
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
|
||||
model_weights_out += chunk_idx * chunk_size;
|
||||
}
|
||||
|
||||
n -= chunk_idx * chunk_size;
|
||||
n -= chunk_idx * chunk_size;
|
||||
|
||||
// Non-divergent exit condition for the __syncthreads
|
||||
float incoming_grads[ILP];
|
||||
float incoming_weights[ILP];
|
||||
float incoming_moms[ILP];
|
||||
for (int i_start = 0;
|
||||
i_start < n && i_start < chunk_size;
|
||||
i_start += blockDim.x * ILP)
|
||||
{
|
||||
// Non-divergent exit condition for the __syncthreads
|
||||
float incoming_grads[ILP];
|
||||
float incoming_weights[ILP];
|
||||
float incoming_moms[ILP];
|
||||
for (int i_start = 0; i_start < n && i_start < chunk_size;
|
||||
i_start += blockDim.x * ILP) {
|
||||
#pragma unroll
|
||||
for (int ii = 0; ii < ILP; ii++)
|
||||
{
|
||||
incoming_grads[ii] = 0;
|
||||
incoming_weights[ii] = 0;
|
||||
incoming_moms[ii] = 0;
|
||||
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||
if (i < n && i < chunk_size)
|
||||
{
|
||||
incoming_grads[ii] = static_cast<float>(grad_in[i]) * scale;
|
||||
incoming_weights[ii] = static_cast<float>(weight_in[i]);
|
||||
incoming_moms[ii] = static_cast<float>(mom_in[i]);
|
||||
}
|
||||
}
|
||||
for (int ii = 0; ii < ILP; ii++) {
|
||||
incoming_grads[ii] = 0;
|
||||
incoming_weights[ii] = 0;
|
||||
incoming_moms[ii] = 0;
|
||||
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||
if (i < n && i < chunk_size) {
|
||||
incoming_grads[ii] = static_cast<float>(grad_in[i]) * scale;
|
||||
incoming_weights[ii] = static_cast<float>(weight_in[i]);
|
||||
incoming_moms[ii] = static_cast<float>(mom_in[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// note for clarification to future michael:
|
||||
// From a pure memory dependency perspective, there's likely no point unrolling
|
||||
@ -98,185 +83,128 @@ struct SGDFunctor
|
||||
// Put another way, the STGs are dependent on the LDGs, but not on each other.
|
||||
// There is still compute ILP benefit from unrolling the loop though.
|
||||
#pragma unroll
|
||||
for (int ii = 0; ii < ILP; ii++)
|
||||
{
|
||||
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||
if (i < n && i < chunk_size)
|
||||
{
|
||||
// apply weight decay before momentum if necessary
|
||||
if (wd != 0.f && !wd_after_momentum)
|
||||
incoming_grads[ii] += wd * incoming_weights[ii];
|
||||
for (int ii = 0; ii < ILP; ii++) {
|
||||
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||
if (i < n && i < chunk_size) {
|
||||
// apply weight decay before momentum if necessary
|
||||
if (wd != 0.f && !wd_after_momentum)
|
||||
incoming_grads[ii] += wd * incoming_weights[ii];
|
||||
|
||||
if (momentum != 0.f)
|
||||
{
|
||||
if (!first_run)
|
||||
incoming_moms[ii] = incoming_moms[ii] * momentum + (1.f - dampening) * incoming_grads[ii];
|
||||
else // initialize momentums to current incoming grads
|
||||
incoming_moms[ii] = incoming_grads[ii];
|
||||
if (momentum != 0.f) {
|
||||
if (!first_run)
|
||||
incoming_moms[ii] = incoming_moms[ii] * momentum +
|
||||
(1.f - dampening) * incoming_grads[ii];
|
||||
else // initialize momentums to current incoming grads
|
||||
incoming_moms[ii] = incoming_grads[ii];
|
||||
|
||||
if (nesterov)
|
||||
incoming_grads[ii] += momentum * incoming_moms[ii];
|
||||
else
|
||||
incoming_grads[ii] = incoming_moms[ii];
|
||||
}
|
||||
if (nesterov)
|
||||
incoming_grads[ii] += momentum * incoming_moms[ii];
|
||||
else
|
||||
incoming_grads[ii] = incoming_moms[ii];
|
||||
}
|
||||
|
||||
// Apply WD after momentum if desired
|
||||
if (wd != 0.f && wd_after_momentum)
|
||||
incoming_grads[ii] += wd * incoming_weights[ii];
|
||||
// Apply WD after momentum if desired
|
||||
if (wd != 0.f && wd_after_momentum)
|
||||
incoming_grads[ii] += wd * incoming_weights[ii];
|
||||
|
||||
// adjust the weight and write out
|
||||
weight_in[i] += (-lr * incoming_grads[ii]);
|
||||
// adjust the weight and write out
|
||||
weight_in[i] += (-lr * incoming_grads[ii]);
|
||||
|
||||
// if necessary, write out an fp16 copy of the weights
|
||||
if (N == 4)
|
||||
model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
|
||||
// if necessary, write out an fp16 copy of the weights
|
||||
if (N == 4)
|
||||
model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
|
||||
|
||||
// also write out the new momentum
|
||||
if (momentum != 0.f)
|
||||
mom_in[i] = incoming_moms[ii];
|
||||
}
|
||||
}
|
||||
// also write out the new momentum
|
||||
if (momentum != 0.f) mom_in[i] = incoming_moms[ii];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void multi_tensor_sgd_cuda(
|
||||
int chunk_size,
|
||||
at::Tensor noop_flag,
|
||||
std::vector<std::vector<at::Tensor>> tensor_lists,
|
||||
float wd,
|
||||
float momentum,
|
||||
float dampening,
|
||||
float lr,
|
||||
bool nesterov,
|
||||
bool first_run,
|
||||
bool wd_after_momentum,
|
||||
float scale)
|
||||
{
|
||||
auto num_tensors = tensor_lists.size();
|
||||
auto grad_type = tensor_lists[0][0].scalar_type();
|
||||
auto weight_type = tensor_lists[1][0].scalar_type();
|
||||
void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
|
||||
std::vector<std::vector<at::Tensor>> tensor_lists,
|
||||
float wd, float momentum, float dampening, float lr,
|
||||
bool nesterov, bool first_run,
|
||||
bool wd_after_momentum, float scale) {
|
||||
auto num_tensors = tensor_lists.size();
|
||||
auto grad_type = tensor_lists[0][0].scalar_type();
|
||||
auto weight_type = tensor_lists[1][0].scalar_type();
|
||||
|
||||
if (num_tensors == 4)
|
||||
for (int i = 0; i < tensor_lists[3].size(); i++)
|
||||
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
|
||||
"Additional output tensors should always be fp16.");
|
||||
if (num_tensors == 4)
|
||||
for (int i = 0; i < tensor_lists[3].size(); i++)
|
||||
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
|
||||
"Additional output tensors should always be fp16.");
|
||||
|
||||
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(), "expected noop flag to be on the same device as tensors");
|
||||
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(),
|
||||
"expected noop flag to be on the same device as tensors");
|
||||
|
||||
// We have 3 possibilities to handle here, in terms of
|
||||
// grad_type, param_type, momentum_type, requires_fp16_copy
|
||||
// 1. fp16, fp16, fp16, No
|
||||
// 2. fp32, fp32, fp32, No
|
||||
// 3. fp16, fp32, fp32, Yes
|
||||
// 4. fp32, fp32, fp32, Yes // this is the materialize_master_grads=True case
|
||||
// It's easier to hardcode these possibilities than to use
|
||||
// switches etc. to handle the cross-product of cases where
|
||||
// we don't want the majority of them.
|
||||
// We have 3 possibilities to handle here, in terms of
|
||||
// grad_type, param_type, momentum_type, requires_fp16_copy
|
||||
// 1. fp16, fp16, fp16, No
|
||||
// 2. fp32, fp32, fp32, No
|
||||
// 3. fp16, fp32, fp32, Yes
|
||||
// 4. fp32, fp32, fp32, Yes // this is the materialize_master_grads=True case
|
||||
// It's easier to hardcode these possibilities than to use
|
||||
// switches etc. to handle the cross-product of cases where
|
||||
// we don't want the majority of them.
|
||||
|
||||
// Case 1. fp16, fp16, fp16, No
|
||||
if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Half &&
|
||||
num_tensors == 3)
|
||||
{
|
||||
multi_tensor_apply<3>(
|
||||
BLOCK_SIZE,
|
||||
chunk_size,
|
||||
noop_flag,
|
||||
tensor_lists,
|
||||
SGDFunctor<3, at::Half, at::Half>(),
|
||||
wd,
|
||||
momentum,
|
||||
dampening,
|
||||
lr,
|
||||
nesterov,
|
||||
first_run,
|
||||
wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 2. fp16, fp32, fp32, No
|
||||
// else if (grad_type == at::ScalarType::Half &&
|
||||
// weight_type == at::ScalarType::Float &&
|
||||
// num_tensors == 3) {
|
||||
// multi_tensor_apply<3>(
|
||||
// BLOCK_SIZE,
|
||||
// chunk_size,
|
||||
// noop_flag,
|
||||
// tensor_lists,
|
||||
// SGDFunctor<3, at::Half, float>(),
|
||||
// wd,
|
||||
// momentum,
|
||||
// dampening,
|
||||
// lr,
|
||||
// nesterov,
|
||||
// first_run,
|
||||
// wd_after_momentum);
|
||||
// }
|
||||
// Case 2. fp32, fp32, fp32, No
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float &&
|
||||
num_tensors == 3)
|
||||
{
|
||||
multi_tensor_apply<3>(
|
||||
BLOCK_SIZE,
|
||||
chunk_size,
|
||||
noop_flag,
|
||||
tensor_lists,
|
||||
SGDFunctor<3, float, float>(),
|
||||
wd,
|
||||
momentum,
|
||||
dampening,
|
||||
lr,
|
||||
nesterov,
|
||||
first_run,
|
||||
wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 3. fp16, fp32, fp32, Yes
|
||||
else if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Float &&
|
||||
num_tensors == 4)
|
||||
{
|
||||
multi_tensor_apply<4>(
|
||||
BLOCK_SIZE,
|
||||
chunk_size,
|
||||
noop_flag,
|
||||
tensor_lists,
|
||||
SGDFunctor<4, at::Half, float>(),
|
||||
wd,
|
||||
momentum,
|
||||
dampening,
|
||||
lr,
|
||||
nesterov,
|
||||
first_run,
|
||||
wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 4. fp32, fp32, fp32, Yes
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float &&
|
||||
num_tensors == 4)
|
||||
{
|
||||
multi_tensor_apply<4>(
|
||||
BLOCK_SIZE,
|
||||
chunk_size,
|
||||
noop_flag,
|
||||
tensor_lists,
|
||||
SGDFunctor<4, float, float>(),
|
||||
wd,
|
||||
momentum,
|
||||
dampening,
|
||||
lr,
|
||||
nesterov,
|
||||
first_run,
|
||||
wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
else
|
||||
{
|
||||
AT_ERROR("multi_tensor_sgd only supports some combinations of gradient & weight types. Given: ",
|
||||
"gradient: ", grad_type, ", weight: ", weight_type, ", num_lists: ", num_tensors);
|
||||
}
|
||||
// Case 1. fp16, fp16, fp16, No
|
||||
if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Half && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<3, at::Half, at::Half>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 2. fp16, fp32, fp32, No
|
||||
// else if (grad_type == at::ScalarType::Half &&
|
||||
// weight_type == at::ScalarType::Float &&
|
||||
// num_tensors == 3) {
|
||||
// multi_tensor_apply<3>(
|
||||
// BLOCK_SIZE,
|
||||
// chunk_size,
|
||||
// noop_flag,
|
||||
// tensor_lists,
|
||||
// SGDFunctor<3, at::Half, float>(),
|
||||
// wd,
|
||||
// momentum,
|
||||
// dampening,
|
||||
// lr,
|
||||
// nesterov,
|
||||
// first_run,
|
||||
// wd_after_momentum);
|
||||
// }
|
||||
// Case 2. fp32, fp32, fp32, No
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 3) {
|
||||
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<3, float, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 3. fp16, fp32, fp32, Yes
|
||||
else if (grad_type == at::ScalarType::Half &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 4) {
|
||||
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<4, at::Half, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
}
|
||||
// Case 4. fp32, fp32, fp32, Yes
|
||||
else if (grad_type == at::ScalarType::Float &&
|
||||
weight_type == at::ScalarType::Float && num_tensors == 4) {
|
||||
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
SGDFunctor<4, float, float>(), wd, momentum,
|
||||
dampening, lr, nesterov, first_run, wd_after_momentum,
|
||||
scale);
|
||||
} else {
|
||||
AT_ERROR(
|
||||
"multi_tensor_sgd only supports some combinations of gradient & weight "
|
||||
"types. Given: ",
|
||||
"gradient: ", grad_type, ", weight: ", weight_type,
|
||||
", num_lists: ", num_tensors);
|
||||
}
|
||||
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
}
|
Loading…
Reference in New Issue
Block a user