mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 09:38:05 +00:00
[Fix] Remove obsolete files - inference (#5650)
This commit is contained in:
@@ -1,59 +0,0 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from transformers import LlamaTokenizer
|
||||
|
||||
from colossalai.inference.quant.smoothquant.models.llama import SmoothLlamaForCausalLM
|
||||
|
||||
|
||||
def build_model_and_tokenizer(model_name):
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_name, model_max_length=512)
|
||||
kwargs = {"torch_dtype": torch.float16, "device_map": "sequential"}
|
||||
model = SmoothLlamaForCausalLM.from_pretrained(model_name, **kwargs)
|
||||
model = model.to(torch.float32)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, help="model name")
|
||||
parser.add_argument(
|
||||
"--output-path",
|
||||
type=str,
|
||||
help="where to save the checkpoint",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-path",
|
||||
type=str,
|
||||
help="location of the calibration dataset",
|
||||
)
|
||||
parser.add_argument("--num-samples", type=int, default=10)
|
||||
parser.add_argument("--seq-len", type=int, default=512)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = parse_args()
|
||||
model_path = args.model_name
|
||||
dataset_path = args.dataset_path
|
||||
output_path = args.output_path
|
||||
num_samples = args.num_samples
|
||||
seq_len = args.seq_len
|
||||
|
||||
model, tokenizer = build_model_and_tokenizer(model_path)
|
||||
if not os.path.exists(dataset_path):
|
||||
raise FileNotFoundError(f"Cannot find the dataset at {args.dataset_path}")
|
||||
dataset = load_dataset("json", data_files=dataset_path, split="train")
|
||||
|
||||
model.quantized(tokenizer, dataset, num_samples=num_samples, seq_len=seq_len)
|
||||
model = model.cuda()
|
||||
|
||||
model.save_quantized(output_path, model_basename="llama-7b")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,98 +0,0 @@
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
import colossalai
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.inference import InferenceEngine
|
||||
from colossalai.testing import spawn
|
||||
|
||||
INPUT_TEXTS = [
|
||||
"What is the longest river in the world?",
|
||||
"Explain the difference between process and thread in compouter science.",
|
||||
]
|
||||
|
||||
|
||||
def run_inference(args):
|
||||
llama_model_path = args.model_path
|
||||
llama_tokenize_path = args.tokenizer_path or args.model_path
|
||||
|
||||
max_input_len = args.max_input_len
|
||||
max_output_len = args.max_output_len
|
||||
max_batch_size = args.batch_size
|
||||
micro_batch_size = args.micro_batch_size
|
||||
tp_size = args.tp_size
|
||||
pp_size = args.pp_size
|
||||
rank = dist.get_rank()
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(llama_tokenize_path, padding_side="left")
|
||||
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||
|
||||
if args.quant is None:
|
||||
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.pad_token_id)
|
||||
elif args.quant == "gptq":
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
|
||||
model = AutoGPTQForCausalLM.from_quantized(
|
||||
llama_model_path, inject_fused_attention=False, device=torch.cuda.current_device()
|
||||
)
|
||||
elif args.quant == "smoothquant":
|
||||
from colossalai.inference.quant.smoothquant.models.llama import SmoothLlamaForCausalLM
|
||||
|
||||
model = SmoothLlamaForCausalLM.from_quantized(llama_model_path, model_basename=args.smoothquant_base_name)
|
||||
model = model.cuda()
|
||||
|
||||
engine = InferenceEngine(
|
||||
tp_size=tp_size,
|
||||
pp_size=pp_size,
|
||||
model=model,
|
||||
max_input_len=max_input_len,
|
||||
max_output_len=max_output_len,
|
||||
max_batch_size=max_batch_size,
|
||||
micro_batch_size=micro_batch_size,
|
||||
quant=args.quant,
|
||||
dtype=args.dtype,
|
||||
)
|
||||
|
||||
inputs = tokenizer(INPUT_TEXTS, return_tensors="pt", padding="longest", max_length=max_input_len, truncation=True)
|
||||
inputs = {k: v.to(get_accelerator().get_current_device()) for k, v in inputs.items()}
|
||||
outputs = engine.generate(inputs)
|
||||
|
||||
if rank == 0:
|
||||
output_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
for input_text, output_text in zip(INPUT_TEXTS, output_texts):
|
||||
print(f"Input: {input_text}")
|
||||
print(f"Output: {output_text}")
|
||||
|
||||
|
||||
def run_tp_pipeline_inference(rank, world_size, port, args):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_inference(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-p", "--model_path", type=str, help="Model path", required=True)
|
||||
parser.add_argument("-i", "--input", default="What is the longest river in the world?")
|
||||
parser.add_argument("-t", "--tokenizer_path", type=str, help="Tokenizer path", default=None)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quant",
|
||||
type=str,
|
||||
choices=["gptq", "smoothquant"],
|
||||
default=None,
|
||||
help="quantization type: 'gptq' or 'smoothquant'",
|
||||
)
|
||||
parser.add_argument("--smoothquant_base_name", type=str, default=None, help="soothquant base name")
|
||||
parser.add_argument("--tp_size", type=int, default=1, help="Tensor parallel size")
|
||||
parser.add_argument("--pp_size", type=int, default=1, help="Pipeline parallel size")
|
||||
parser.add_argument("-b", "--batch_size", type=int, default=4, help="Maximum batch size")
|
||||
parser.add_argument("--max_input_len", type=int, default=2048, help="Maximum input length")
|
||||
parser.add_argument("--max_output_len", type=int, default=64, help="Maximum output length")
|
||||
parser.add_argument("--micro_batch_size", type=int, default=1, help="Micro batch size")
|
||||
parser.add_argument("--dtype", default="fp16", type=str)
|
||||
|
||||
args = parser.parse_args()
|
||||
spawn(run_tp_pipeline_inference, nprocs=args.tp_size * args.pp_size, args=args)
|
Reference in New Issue
Block a user