mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 12:39:01 +00:00
[Inference/kernel]Add Fused Rotary Embedding and KVCache Memcopy CUDA Kernel (#5418)
* add rotary embedding kernel * add rotary_embedding_kernel * add fused rotary_emb and kvcache memcopy * add fused_rotary_emb_and_cache_kernel.cu * add fused_rotary_emb_and_memcopy * fix bugs in fused_rotary_emb_and_cache_kernel.cu * fix ci bugs * use vec memcopy and opt the gloabl memory access * fix code style * fix test_rotary_embdding_unpad.py * codes revised based on the review comments * fix bugs about include path * rm inline
This commit is contained in:
@@ -0,0 +1,112 @@
|
||||
import torch
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.kernel.triton import copy_kv_to_blocked_cache, decoding_fused_rotary_embedding, rotary_embedding
|
||||
from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2, mock_alloc_single_token
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
try:
|
||||
import triton # noqa
|
||||
|
||||
except ImportError:
|
||||
print("please install triton from https://github.com/openai/triton")
|
||||
|
||||
|
||||
BATCH = 16
|
||||
configs = [
|
||||
triton.testing.Benchmark(
|
||||
x_names=["num_tokens"],
|
||||
x_vals=[2**i for i in range(4, 11)],
|
||||
line_arg="provider",
|
||||
line_vals=[
|
||||
"no_fused_triton_rotary_emb_func",
|
||||
"fused_triton_rotary_emb_func",
|
||||
"no_fused_cuda_rotary_emb_func",
|
||||
"fused_cuda_rotary_emb_func",
|
||||
],
|
||||
line_names=[
|
||||
"no_fused_triton_rotary_emb_func",
|
||||
"fused_triton_rotary_emb_func",
|
||||
"no_fused_cuda_rotary_emb_func",
|
||||
"fused_cuda_rotary_emb_func",
|
||||
],
|
||||
styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"rotary_emb-batch-{BATCH}",
|
||||
args={"num_kv_heads": 16},
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
@triton.testing.perf_report(configs)
|
||||
def benchmark_rotary_emb(
|
||||
provider: str,
|
||||
num_tokens: int,
|
||||
num_kv_heads: int,
|
||||
):
|
||||
BATCH_SIZE = 16
|
||||
SEQ_LEN = num_tokens // BATCH_SIZE
|
||||
max_num_blocks_per_seq = 8
|
||||
block_size = 64
|
||||
warmup = 10
|
||||
rep = 100
|
||||
|
||||
head_dim = 4096
|
||||
dtype = torch.float16
|
||||
|
||||
q_shape = (num_tokens, num_kv_heads, head_dim)
|
||||
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
||||
k_shape = (num_tokens, num_kv_heads, head_dim)
|
||||
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
||||
v = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
||||
|
||||
cos_shape = (num_tokens, head_dim // 2)
|
||||
|
||||
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
|
||||
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
|
||||
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
|
||||
|
||||
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
|
||||
block_tables = mock_alloc_block_table_and_kvcache_v2(
|
||||
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
||||
)
|
||||
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
|
||||
new_q = torch.randn_like(new_k)
|
||||
new_v = torch.randn_like(new_k)
|
||||
|
||||
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
|
||||
kv_seq_lengths = past_kv_seq_lengths + 1
|
||||
block_tables = block_tables.to(device="cuda")
|
||||
|
||||
if provider == "no_fused_triton_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
rotary_embedding(new_q, new_k, cos, sin),
|
||||
copy_kv_to_blocked_cache(
|
||||
new_k, new_v, k_cache, v_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables
|
||||
),
|
||||
]
|
||||
elif provider == "fused_triton_rotary_emb_func":
|
||||
fn = lambda: decoding_fused_rotary_embedding(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, block_tables, kv_seq_lengths
|
||||
)
|
||||
elif provider == "no_fused_cuda_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
inference_ops.rotary_embedding(new_q, new_k, cos, sin),
|
||||
inference_ops.decode_kv_cache_memcpy(new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables),
|
||||
]
|
||||
elif provider == "fused_cuda_rotary_emb_func":
|
||||
fn = lambda: inference_ops.rotary_embedding_and_cache_copy(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, kv_seq_lengths, block_tables
|
||||
)
|
||||
else:
|
||||
raise ValueError("Undefined provider")
|
||||
|
||||
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
||||
return ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
benchmark_rotary_emb.run(save_path=".", print_data=True)
|
Reference in New Issue
Block a user