mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 05:20:33 +00:00
[Inference/kernel]Add Fused Rotary Embedding and KVCache Memcopy CUDA Kernel (#5418)
* add rotary embedding kernel * add rotary_embedding_kernel * add fused rotary_emb and kvcache memcopy * add fused_rotary_emb_and_cache_kernel.cu * add fused_rotary_emb_and_memcopy * fix bugs in fused_rotary_emb_and_cache_kernel.cu * fix ci bugs * use vec memcopy and opt the gloabl memory access * fix code style * fix test_rotary_embdding_unpad.py * codes revised based on the review comments * fix bugs about include path * rm inline
This commit is contained in:
@@ -0,0 +1,76 @@
|
||||
import torch
|
||||
import triton
|
||||
from vllm._C import ops
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.kernel.triton import rotary_embedding
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
BATCH = 16
|
||||
configs = [
|
||||
triton.testing.Benchmark(
|
||||
x_names=["num_tokens"],
|
||||
x_vals=[2**i for i in range(4, 12)],
|
||||
line_arg="provider",
|
||||
line_vals=["triton_func", "colossal_cuda_func", "vllm_cuda_func"],
|
||||
line_names=["triton_func", "colossal_cuda_func", "vllm_cuda_func"],
|
||||
styles=[("red", "-"), ("blue", "-"), ("yellow", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"rotary_emb-batch-{BATCH}",
|
||||
args={"num_kv_heads": 16},
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def torch_rotary_emb(x, cos, sin):
|
||||
seq_len, h, dim = x.shape
|
||||
x0 = x[:, :, 0 : dim // 2]
|
||||
x1 = x[:, :, dim // 2 : dim]
|
||||
cos = cos.view((seq_len, 1, dim // 2))
|
||||
sin = sin.view((seq_len, 1, dim // 2))
|
||||
o0 = x0 * cos - x1 * sin
|
||||
o1 = x0 * sin + x1 * cos
|
||||
return torch.cat((o0, o1), dim=-1)
|
||||
|
||||
|
||||
@triton.testing.perf_report(configs)
|
||||
def benchmark_rotary_emb(
|
||||
provider: str,
|
||||
num_tokens: int,
|
||||
num_kv_heads: int,
|
||||
):
|
||||
warmup = 10
|
||||
rep = 100
|
||||
|
||||
head_dim = 128
|
||||
dtype = torch.float16
|
||||
q_shape = (num_tokens, num_kv_heads, head_dim)
|
||||
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
||||
k_shape = (num_tokens, num_kv_heads, head_dim)
|
||||
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
||||
cos_shape = (4096, head_dim // 2)
|
||||
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||||
|
||||
cos_sin = torch.stack((cos, sin), dim=1).contiguous()
|
||||
|
||||
positions = torch.arange(num_tokens).cuda()
|
||||
|
||||
if provider == "triton_func":
|
||||
fn = lambda: rotary_embedding(q, k, cos, sin)
|
||||
elif provider == "colossal_cuda_func":
|
||||
fn = lambda: inference_ops.rotary_embedding(q, k, cos, sin)
|
||||
elif provider == "vllm_cuda_func":
|
||||
q = q.view(num_tokens, -1)
|
||||
k = k.view(num_tokens, -1)
|
||||
fn = lambda: ops.rotary_embedding(positions, q, k, head_dim, cos_sin, True)
|
||||
else:
|
||||
raise ValueError("Undefined provider")
|
||||
|
||||
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
||||
return ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
benchmark_rotary_emb.run(save_path=".", print_data=True)
|
Reference in New Issue
Block a user