[checkpoint] checkpoint for ColoTensor Model (#1196)

This commit is contained in:
Jiarui Fang
2022-07-06 17:22:03 +08:00
committed by GitHub
parent 291e22aac6
commit f38006ea83
4 changed files with 292 additions and 1 deletions

View File

@@ -0,0 +1,3 @@
from .module_checkpoint import save_checkpoint, load_checkpoint
__all__ = ['save_checkpoint', 'load_checkpoint']

View File

@@ -0,0 +1,73 @@
import torch
import torch.nn as nn
import torch.distributed as dist
import collections
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
from colossalai.utils.model.colo_init_context import colo_state_dict
def save_checkpoint(dire,
epoch: int,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer = None,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
*args,
**kwargs):
"""save_checkpoint
save a model, whose parameters are `ColoTensor`s.
Args:
dire (_type_): _description_
epoch (int): _description_
model (torch.nn.Module): _description_
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
"""
model_state = {
'epoch': epoch,
'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)
}
if dist.get_rank() == 0:
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
lr_scheduler_dict = lr_scheduler.state_dict()
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
optim_state = {
'epoch': epoch,
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler_dict
}
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
def load_checkpoint(dire,
epoch: int,
rank: int,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer = None,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
*args,
**kwargs):
"""load_checkpoint
load a model, whose parameters are `ColoTensor`s.
Args:
dire (_type_): _description_
epoch (int): _description_
rank (int): _description_
model (torch.nn.Module): _description_
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
"""
model_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch))
model_state['model'] = collections.OrderedDict([(k.split('.', 1)[1], v) for k, v in model_state['model'].items()])
model.load_state_dict(model_state['model'])
optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank))
optimizer.load_state_dict(optim_state['optimizer'])
lr_scheduler_dict = optim_state['lr_scheduler']
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(
optimizer,
after_scheduler_dict['T_max'],
after_scheduler_dict['eta_min'],
after_scheduler_dict['last_epoch']
)
lr_scheduler.load_state_dict(lr_scheduler_dict)

View File

@@ -38,15 +38,18 @@ def colo_state_dict(self, destination=None, prefix='', keep_vars=False, state_di
# build param to spec mapping
mapping1 = dict()
mapping2 = dict()
mapping3 = dict()
# gather all params
has_dist_parameter = False
with torch.no_grad():
for param in self.parameters():
if isinstance(param, ColoParameter) and param.has_compute_spec():
if isinstance(param, ColoParameter):
has_dist_parameter = True
mapping1[id(param)] = copy(param.dist_spec)
mapping2[id(param)] = copy(param.compute_spec)
mapping3[id(param)] = param.get_process_group()
param.set_dist_spec(distspec.replicate())
param.process_group = None
# TODO: fix when keep_vars = True
# when keep_vars = False, the state_dict_func will call detach to create
@@ -64,6 +67,7 @@ def colo_state_dict(self, destination=None, prefix='', keep_vars=False, state_di
if param_id in mapping1:
dist_spec = mapping1[id(param)]
compute_spec = mapping2[id(param)]
param.process_group = mapping3[id(param)]
param.set_tensor_spec(dist_spec, compute_spec)
return ret