[Inference] Fix API server, test and example (#5712)

* fix api server

* fix generation config

* fix api server

* fix comments

* fix infer hanging bug

* resolve comments, change backend to free port
This commit is contained in:
Jianghai
2024-05-15 15:47:31 +08:00
committed by GitHub
parent 74c47921fa
commit f47f2fbb24
5 changed files with 73 additions and 32 deletions

View File

@@ -4,6 +4,7 @@ from functools import partial
from typing import AsyncIterator, Dict, Iterable, List, Optional, Set, Tuple, Type
from colossalai.inference.core.engine import InferenceEngine
from colossalai.inference.sampler import search_tokens
# CLI logger
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
@@ -168,26 +169,44 @@ class _AsyncInferenceEngine(InferenceEngine):
generated results.
"""
batch = self.request_handler.schedule()
input_token_ids, output_tensor, input_meta_data = self.prepare_input(batch)
loop = asyncio.get_running_loop()
if input_meta_data.use_cuda_graph:
model_executable = self.graph_runners[input_meta_data.batch_size]
else:
model_executable = self.model
# Use run_in_executor to asyncally run the sync method model.forward().
logits = await loop.run_in_executor(
None,
self.model,
batch,
model_executable,
input_token_ids,
output_tensor,
input_meta_data,
self.k_cache,
self.v_cache,
)
if self.inference_config.pad_input:
logits = logits[:, -1, :]
self.request_handler.search_tokens(self.generation_config, logits)
next_tokens = search_tokens(
self.generation_config, logits, input_meta_data.is_prompts, batch_token_ids=input_meta_data.batch_token_ids
)
self.request_handler.append_next_tokens(next_tokens)
finished_sequences = self.request_handler.update()
for sequence in finished_sequences:
sequence.output = self.tokenizer.decode(sequence.output_token_id)
return finished_sequences, self.request_handler.total_requests_in_batch_bucket() > 0
return finished_sequences, not self.request_handler.running_list.is_empty()
def add_single_request(self, request_id: int, prompt: str, prompt_token_ids, generation_config=None):
prompts = [prompt]
gen_config_dict = generation_config.to_dict() if generation_config is not None else {}
self.add_request(request_ids=request_id, prompts=prompts, prompts_token_ids=prompt_token_ids, **gen_config_dict)
class AsyncInferenceEngine:
@@ -240,7 +259,6 @@ class AsyncInferenceEngine:
for new_request in new_requests:
self.engine.add_single_request(**new_request)
newly_finished_seqs, has_running_requests = await self.engine.async_step()
for seq in newly_finished_seqs:
self._request_tracer.process_finished_request(seq)
@@ -273,6 +291,7 @@ class AsyncInferenceEngine:
request_id: int,
prompt: Optional[str],
prompt_token_ids: Optional[List[int]] = None,
generation_config=None,
) -> RequstStream:
"""
Add a request to the background tracker(waiting queue), start the background loop if needed.
@@ -286,6 +305,7 @@ class AsyncInferenceEngine:
request_id,
prompt=prompt,
prompt_token_ids=prompt_token_ids,
generation_config=generation_config,
)
return stream
@@ -294,13 +314,16 @@ class AsyncInferenceEngine:
request_id: int,
prompt: Optional[str],
prompt_token_ids: Optional[List[int]] = None,
generation_config=None,
) -> AsyncIterator[str]:
"""
Generate output from a request. It receives the request from http server, adds it into the
waitting queue of Async Engine and streams the output sequence.
"""
try:
stream = await self.add_request(request_id, prompt, prompt_token_ids=prompt_token_ids)
stream = await self.add_request(
request_id, prompt, prompt_token_ids=prompt_token_ids, generation_config=generation_config
)
return await stream.get_result()
except (Exception, asyncio.CancelledError) as e:

View File

@@ -154,7 +154,6 @@ class InferenceEngine:
else:
model_type = "nopadding_" + self.model_config.model_type
model_policy = model_policy_map[model_type]()
pg_mesh = ProcessGroupMesh(self.inference_config.pp_size, self.inference_config.tp_size)
tp_group = pg_mesh.get_group_along_axis(TP_AXIS)
@@ -589,7 +588,7 @@ class InferenceEngine:
def add_request(
self,
request_ids: Union[List[int], int] = None,
prompts: List[str] = None,
prompts: Union[List[str], str] = None,
prompts_token_ids: Union[List[int], torch.Tensor, np.ndarray] = None,
**kwargs,
) -> None: