[Inference] Fix API server, test and example (#5712)

* fix api server

* fix generation config

* fix api server

* fix comments

* fix infer hanging bug

* resolve comments, change backend to free port
This commit is contained in:
Jianghai
2024-05-15 15:47:31 +08:00
committed by GitHub
parent 74c47921fa
commit f47f2fbb24
5 changed files with 73 additions and 32 deletions

View File

@@ -20,10 +20,12 @@ from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, Response, StreamingResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
import colossalai
from colossalai.inference.config import InferenceConfig
from colossalai.inference.server.chat_service import ChatServing
from colossalai.inference.server.completion_service import CompletionServing
from colossalai.inference.server.utils import id_generator
from colossalai.inference.utils import find_available_ports
from colossalai.inference.core.async_engine import AsyncInferenceEngine, InferenceEngine # noqa
@@ -54,8 +56,9 @@ async def generate(request: Request) -> Response:
"""
request_dict = await request.json()
prompt = request_dict.pop("prompt")
stream = request_dict.pop("stream", "false").lower()
stream = request_dict.pop("stream", "false")
if isinstance(stream, str):
stream = stream.lower()
request_id = id_generator()
generation_config = get_generation_config(request_dict)
results = engine.generate(request_id, prompt, generation_config=generation_config)
@@ -66,7 +69,7 @@ async def generate(request: Request) -> Response:
ret = {"text": request_output[len(prompt) :]}
yield (json.dumps(ret) + "\0").encode("utf-8")
if stream == "true":
if stream == "true" or stream == True:
return StreamingResponse(stream_results())
# Non-streaming case
@@ -86,12 +89,14 @@ async def generate(request: Request) -> Response:
@app.post("/completion")
async def create_completion(request: Request):
request_dict = await request.json()
stream = request_dict.pop("stream", "false").lower()
stream = request_dict.pop("stream", "false")
if isinstance(stream, str):
stream = stream.lower()
generation_config = get_generation_config(request_dict)
result = await completion_serving.create_completion(request, generation_config)
ret = {"request_id": result.request_id, "text": result.output}
if stream == "true":
if stream == "true" or stream == True:
return StreamingResponse(content=json.dumps(ret) + "\0", media_type="text/event-stream")
else:
return JSONResponse(content=ret)
@@ -101,10 +106,12 @@ async def create_completion(request: Request):
async def create_chat(request: Request):
request_dict = await request.json()
stream = request_dict.get("stream", "false").lower()
stream = request_dict.get("stream", "false")
if isinstance(stream, str):
stream = stream.lower()
generation_config = get_generation_config(request_dict)
message = await chat_serving.create_chat(request, generation_config)
if stream == "true":
if stream == "true" or stream == True:
return StreamingResponse(content=message, media_type="text/event-stream")
else:
ret = {"role": message.role, "text": message.content}
@@ -115,27 +122,29 @@ def get_generation_config(request):
generation_config = async_engine.engine.generation_config
for arg in request:
if hasattr(generation_config, arg):
generation_config[arg] = request[arg]
setattr(generation_config, arg, request[arg])
return generation_config
def add_engine_config(parser):
parser.add_argument("--model", type=str, default="llama2-7b", help="name or path of the huggingface model to use")
parser.add_argument(
"--max-model-len",
type=int,
default=None,
help="model context length. If unspecified, " "will be automatically derived from the model.",
"-m", "--model", type=str, default="llama2-7b", help="name or path of the huggingface model to use"
)
# Parallel arguments
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1, help="number of tensor parallel replicas")
# Parallel arguments not supported now
# KV cache arguments
parser.add_argument("--block-size", type=int, default=16, choices=[8, 16, 32], help="token block size")
parser.add_argument("--max_batch_size", type=int, default=8, help="maximum number of batch size")
parser.add_argument("-i", "--max_input_len", type=int, default=128, help="max input length")
parser.add_argument("-o", "--max_output_len", type=int, default=128, help="max output length")
parser.add_argument("-d", "--dtype", type=str, default="fp16", help="Data type", choices=["fp16", "fp32", "bf16"])
parser.add_argument("--use_cuda_kernel", action="store_true", help="Use CUDA kernel, use Triton by default")
# generation arguments
parser.add_argument(
"--prompt_template",
@@ -150,7 +159,7 @@ def parse_args():
parser = argparse.ArgumentParser(description="Colossal-Inference API server.")
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--port", type=int, default=8000, help="port of FastAPI server.")
parser.add_argument("--ssl-keyfile", type=str, default=None)
parser.add_argument("--ssl-certfile", type=str, default=None)
parser.add_argument(
@@ -164,6 +173,7 @@ def parse_args():
"specified, the model name will be the same as "
"the huggingface name.",
)
parser.add_argument(
"--chat-template",
type=str,
@@ -184,13 +194,21 @@ def parse_args():
if __name__ == "__main__":
args = parse_args()
inference_config = InferenceConfig.from_dict(vars(args))
model = AutoModelForCausalLM.from_pretrained(args.model)
tokenizer = AutoTokenizer.from_pretrained(args.model)
colossalai_backend_port = find_available_ports(1)[0]
colossalai.launch(
rank=0,
world_size=1,
host=args.host,
port=colossalai_backend_port,
backend="nccl",
)
model = AutoModelForCausalLM.from_pretrained(args.model)
async_engine = AsyncInferenceEngine(
start_engine_loop=True, model=model, tokenizer=tokenizer, inference_config=inference_config
start_engine_loop=True, model_or_path=model, tokenizer=tokenizer, inference_config=inference_config
)
engine = async_engine.engine
completion_serving = CompletionServing(async_engine, served_model=model.__class__.__name__)
completion_serving = CompletionServing(async_engine, model.__class__.__name__)
chat_serving = ChatServing(
async_engine,
served_model=model.__class__.__name__,

View File

@@ -23,7 +23,7 @@ class CompletionServing:
# it is not a intuitive way
self.engine.engine.generation_config = generation_config
result_generator = self.engine.generate(request_id, prompt=prompt)
result_generator = self.engine.generate(request_id, prompt=prompt, generation_config=generation_config)
if await request.is_disconnected():
# Abort the request if the client disconnects.