mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 01:06:00 +00:00
[Tensor] add embedding tp1d row (#904)
This commit is contained in:
@@ -5,7 +5,6 @@ from .utils.dummy_data_generator import DummyDataGenerator
|
||||
from .registry import non_distributed_component_funcs
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
|
||||
|
||||
class SimpleNet(CheckpointModule):
|
||||
"""
|
||||
In this no-leaf module, it has subordinate nn.modules and a nn.Parameter.
|
||||
@@ -13,12 +12,14 @@ class SimpleNet(CheckpointModule):
|
||||
|
||||
def __init__(self, checkpoint=False) -> None:
|
||||
super().__init__(checkpoint=checkpoint)
|
||||
self.embed = nn.Embedding(20, 4)
|
||||
self.proj1 = nn.Linear(4, 8)
|
||||
self.ln1 = nn.LayerNorm(8)
|
||||
self.proj2 = nn.Linear(8, 4)
|
||||
self.ln2 = nn.LayerNorm(4)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.embed(x)
|
||||
x = self.proj1(x)
|
||||
x = self.ln1(x)
|
||||
x = self.proj2(x)
|
||||
@@ -26,11 +27,12 @@ class SimpleNet(CheckpointModule):
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class DummyDataLoader(DummyDataGenerator):
|
||||
|
||||
def generate(self):
|
||||
data = torch.rand(16, 4, device=get_current_device())
|
||||
label = torch.randint(low=0, high=2, size=(16,), device=get_current_device())
|
||||
data = torch.randint(low=0, high=20, size=(16,20), device=get_current_device())
|
||||
label = torch.randint(low=0, high=2, size=(16,4), device=get_current_device())
|
||||
return data, label
|
||||
|
||||
|
||||
|
@@ -65,10 +65,60 @@ def run_embedding_tp1d_col_test():
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[local_rank]
|
||||
check_equal(W_grad, layer.weight.grad)
|
||||
|
||||
def run_embedding_tp1d_row_test():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
||||
num_embeddings = 12
|
||||
embedding_dim = 32
|
||||
|
||||
local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||
|
||||
layer_master = torch.nn.Embedding(num_embeddings, embedding_dim)
|
||||
layer = torch.nn.Embedding(num_embeddings, embedding_dim)
|
||||
|
||||
A_master = torch.tensor((0,3,6,9), device=device)
|
||||
A = broadcast_tensor_chunk(A_master, chunk_size=1)
|
||||
|
||||
W_shape = (num_embeddings, embedding_dim)
|
||||
W_master = torch.randn(W_shape, dtype=dtype, device=device)
|
||||
W = broadcast_tensor_chunk(W_master, chunk_size=1)
|
||||
W.requires_grad = True
|
||||
|
||||
# replace the torch nn.Parameters with ColoTensor
|
||||
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Embedding,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
sharded_weight.set_spec(spec) # reshard
|
||||
replace_parameter_add_grad(layer, sharded_weight)
|
||||
out = layer(A)
|
||||
|
||||
replace_parameter_add_grad(layer_master, W_master)
|
||||
C_master = layer_master(A_master)
|
||||
C = C_master.clone()
|
||||
|
||||
check_equal(out, C)
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
||||
grad = broadcast_tensor_chunk(grad_master, chunk_size=1)
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
W_grad = W_master.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=0)[local_rank]
|
||||
check_equal(W_grad, layer.weight.grad)
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_embedding_tp1d_col_test()
|
||||
run_embedding_tp1d_row_test()
|
||||
|
||||
@pytest.mark.dist
|
||||
@parameterize('world_size', [1, 4])
|
||||
|
@@ -47,6 +47,11 @@ def run_1d_col_tp():
|
||||
]
|
||||
spec_col = TensorSpec(parallel_action_list_col)
|
||||
|
||||
parallel_action_list_embedding_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Embedding, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
||||
|
||||
set_seed(1)
|
||||
if rank == 0:
|
||||
model_torch = model_builder(checkpoint=True)
|
||||
@@ -60,6 +65,8 @@ def run_1d_col_tp():
|
||||
p.set_spec(spec_col)
|
||||
if 'proj2' in name and 'weight' in name:
|
||||
p.set_spec(spec_row)
|
||||
if 'embed' in name and 'weight' in name:
|
||||
p.set_spec(spec_embedding_col)
|
||||
|
||||
model = model.cuda()
|
||||
|
||||
@@ -172,6 +179,11 @@ def run_1d_row_tp():
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
|
||||
parallel_action_list_embedding_row = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Embedding, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_row = TensorSpec(parallel_action_list_embedding_row)
|
||||
|
||||
set_seed(1)
|
||||
if rank == 0:
|
||||
model_torch = model_builder(checkpoint=True)
|
||||
@@ -183,6 +195,8 @@ def run_1d_row_tp():
|
||||
continue
|
||||
if 'weight' in name and 'LayerNorm' not in name and 'ln' not in name and 'embed' not in name:
|
||||
p.set_spec(spec)
|
||||
if 'embed' in name and 'weight' in name:
|
||||
p.set_spec(spec_embedding_row)
|
||||
|
||||
model = model.cuda()
|
||||
|
||||
@@ -227,7 +241,7 @@ def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_1d_row_tp()
|
||||
|
||||
run_1d_col_tp()
|
||||
|
||||
@pytest.mark.dist
|
||||
@parameterize('world_size', [1, 4])
|
||||
@@ -238,6 +252,6 @@ def test_simple_net(world_size):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_simple_net()
|
||||
test_simple_net()
|
||||
# test_model_parameters()
|
||||
test_colo_optimizer()
|
||||
# test_colo_optimizer()
|
||||
|
Reference in New Issue
Block a user