[Feature] Zigzag Ring attention (#5905)

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add sp_mode to benchmark; fix varlen interface

* update softmax_lse shape by new interface

* change tester name

* remove buffer clone; support packed seq layout

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Edenzzzz
2024-08-16 13:56:38 +08:00
committed by GitHub
parent 887d2d579b
commit f5c84af0b0
50 changed files with 1870 additions and 326 deletions

View File

@@ -10,6 +10,7 @@ from torch.distributed import ProcessGroup
from torch.nn import Module
from torch.optim import Adam, Optimizer
from torch.testing import assert_close
from transformers.modeling_outputs import BaseModelOutputWithPast
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
@@ -259,7 +260,6 @@ def run_forward_backward_with_hybrid_plugin(
org_output = org_model(**unshard_test_data)
org_loss = criterion(org_output)
org_loss.backward()
return org_loss, org_output, sharded_loss, sharded_output
@@ -302,11 +302,12 @@ def run_forward_backward_with_low_level_zero_plugin(
def check_output_hidden_state(
org_output: Tensor,
sharded_output: Tensor,
org_output: BaseModelOutputWithPast,
sharded_output: BaseModelOutputWithPast,
stage_manager: Optional[PipelineStageManager] = None,
atol: float = 1e-5,
rtol: float = 1e-3,
shard_config: Optional[ShardConfig] = None,
):
org_hidden_state = org_output.last_hidden_state
@@ -315,6 +316,14 @@ def check_output_hidden_state(
else:
sharded_hidden_state = sharded_output.last_hidden_state
# Check if the output sequence is gathered before cross entropy
if shard_config is not None:
seq_dim = 1
sp_group = shard_config.sequence_parallel_process_group
sp_size = shard_config.sequence_parallel_size
if org_hidden_state.shape[seq_dim] == sharded_hidden_state.shape[seq_dim] * sp_size:
org_hidden_state = org_hidden_state.chunk(sp_size, dim=seq_dim)[dist.get_rank(sp_group)]
assert_close(org_hidden_state.float(), sharded_hidden_state.float(), atol=atol, rtol=rtol)
@@ -374,8 +383,11 @@ def get_grad_tensors_for_check(
shard_grad = torch.cat(shard_grad_list, dim=dim)
# embedding may be resized when using tensor parallel
if shard_grad.shape[0] > org_grad.shape[0]:
shard_grad = shard_grad[: org_grad.shape[0], :]
try:
if shard_grad.shape[0] > org_grad.shape[0]:
shard_grad = shard_grad[: org_grad.shape[0], :]
except:
pass
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' grad: {org_grad}, {shard_grad}")
@@ -404,9 +416,6 @@ def check_grad(
org_grad = getattr_(org_model, suffix).weight.grad
shard_grad = getattr_(sharded_model, suffix).weight.grad
shard_weight = getattr_(sharded_model, suffix).weight
# if verbose and dist.get_rank() == 0:
# print("shard_weight", shard_weight)
# print("org_grad", org_grad)
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros_like(shard_grad).to("cuda") for _ in range(dist.get_world_size(tp_group))]
dist.all_gather(shard_grad_list, shard_grad, tp_group)
@@ -440,7 +449,7 @@ def check_all_grad_tensors(check_tensors):
"org_grad": tensor to be compared from the original model
"shard_grad": tensor to be compared from the sharded model
"""
for suffix, check_info in check_tensors.items():
for idx, (suffix, check_info) in enumerate(check_tensors.items()):
org_grad = check_info["org_grad"]
shard_grad = check_info["shard_grad"]
rtol = check_info["rtol"]