mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
change command
This commit is contained in:
@@ -22,3 +22,9 @@ try:
|
||||
from .qwen2 import *
|
||||
except ImportError:
|
||||
print("This version of transformers doesn't support qwen2.")
|
||||
|
||||
|
||||
try:
|
||||
from .command import *
|
||||
except ImportError:
|
||||
print("This version of transformers doesn't support Command-R.")
|
||||
|
81
tests/kit/model_zoo/transformers/command.py
Normal file
81
tests/kit/model_zoo/transformers/command.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
try:
|
||||
from transformers import CohereConfig
|
||||
|
||||
HAS_COMMAND = True
|
||||
except ImportError:
|
||||
HAS_COMMAND = False
|
||||
|
||||
if HAS_COMMAND:
|
||||
# ===============================
|
||||
# Register Command-R
|
||||
# ===============================
|
||||
|
||||
def data_gen():
|
||||
|
||||
|
||||
input_ids = torch.Tensor(
|
||||
[
|
||||
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
|
||||
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
|
||||
]
|
||||
).long()
|
||||
|
||||
attention_mask = torch.Tensor(
|
||||
[
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
]
|
||||
).long()
|
||||
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
# label is needed for casual lm
|
||||
def data_gen_for_casual_lm():
|
||||
data = data_gen()
|
||||
labels = data["input_ids"].clone()
|
||||
data["labels"] = labels
|
||||
return data
|
||||
|
||||
# transform the output to a dict
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# function to get the loss
|
||||
loss_fn = lambda output: output["last_hidden_state"].mean()
|
||||
loss_fn_for_casual_lm = lambda output: output["loss"]
|
||||
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
|
||||
|
||||
config = CohereConfig(
|
||||
num_hidden_layers=8,
|
||||
hidden_size=32,
|
||||
intermediate_size=64,
|
||||
num_attention_heads=4,
|
||||
max_position_embeddings=128,
|
||||
)
|
||||
|
||||
if hasattr(config, "pad_token_id"):
|
||||
config.pad_token_id = config.eos_token_id
|
||||
|
||||
# register the following models
|
||||
# transformers.CohereModel,
|
||||
# transformers.CohereForCausalLM,
|
||||
model_zoo.register(
|
||||
name="transformers_command",
|
||||
model_fn=lambda: transformers.CohereModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_command_for_casual_lm",
|
||||
model_fn=lambda: transformers.CohereForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_casual_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_casual_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
301
tests/test_shardformer/test_model/test_shard_command.py
Normal file
301
tests/test_shardformer/test_model/test_shard_command.py
Normal file
@@ -0,0 +1,301 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.shardformer import PipelineGradientCheckpointConfig
|
||||
from colossalai.shardformer.layer.utils import Randomizer
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_all_grad_tensors,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
get_grad_tensors_for_check,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
unwrap_model,
|
||||
)
|
||||
|
||||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
enable_gradient_checkpointing = test_config.pop("enable_gradient_checkpointing", False)
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
|
||||
model_fn, loss_fn, test_config
|
||||
)
|
||||
if enable_gradient_checkpointing:
|
||||
# org_model.gradient_checkpointing_enable()
|
||||
sharded_model.unwrap().gradient_checkpointing_enable()
|
||||
|
||||
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
||||
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
||||
)
|
||||
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# unwrap model
|
||||
command_model = unwrap_model(org_model, "CohereModel", "model")
|
||||
shard_command_model = unwrap_model(sharded_model, "CohereModel", "model")
|
||||
|
||||
row_layer_for_check = ["layers[0].self_attn.q_proj", "embed_tokens"]
|
||||
col_layer_for_check = ["layers[0].self_attn.o_proj"]
|
||||
# Here we check the grad of layernorm because an all-reduce operation should be performed during sequence parallelism
|
||||
norm_layer_for_check = ["layers[0].input_layernorm", "layers[1].input_layernorm"]
|
||||
|
||||
# During pipeline parallelism, we cannot get the grad of norm layer during first stage, so we only check this when pp is not enbaled
|
||||
if stage_manager is None:
|
||||
norm_layer_for_check.append("norm")
|
||||
|
||||
# Check the grad when using ZeRO-1 and ZeRO-2
|
||||
if (
|
||||
booster.plugin.zero_stage in [1, 2]
|
||||
and booster.plugin.shard_config.enable_sequence_parallelism
|
||||
and booster.plugin.shard_config.sequence_parallelism_mode == "all_to_all"
|
||||
):
|
||||
for p1, p2 in zip(command_model.parameters(), sharded_optimizer._master_param_groups_of_current_rank[0]):
|
||||
working_p = sharded_optimizer._param_store.master_to_working_param[id(p2)]
|
||||
grads = sharded_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(working_p))
|
||||
grad_index = (
|
||||
0 if sharded_optimizer._grad_store._partition_grads else sharded_optimizer._bucket_store.zero_local_rank
|
||||
)
|
||||
grad = grads[grad_index]
|
||||
sharded_grad = p1.grad.view(-1).chunk(dist.get_world_size())[dist.get_rank()]
|
||||
assert_close(sharded_grad, grad[: sharded_grad.shape[0]], atol=5e-3, rtol=5e-3, check_dtype=False)
|
||||
|
||||
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
|
||||
grads_to_check = {}
|
||||
if (stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True)) and booster.plugin.zero_stage == 0:
|
||||
if test_config["precision"] == "fp32":
|
||||
atol, rtol = 1e-6, 1e-4
|
||||
else:
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
row_layer_grads = get_grad_tensors_for_check(
|
||||
command_model, shard_command_model, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False
|
||||
)
|
||||
col_layer_grads = get_grad_tensors_for_check(
|
||||
command_model, shard_command_model, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False
|
||||
)
|
||||
norm_layer_grads = get_grad_tensors_for_check(
|
||||
command_model,
|
||||
shard_command_model,
|
||||
norm_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=1,
|
||||
verbose=False,
|
||||
)
|
||||
grads_to_check.update(col_layer_grads)
|
||||
grads_to_check.update(row_layer_grads)
|
||||
grads_to_check.update(norm_layer_grads)
|
||||
|
||||
# optimizer executes step
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage(ignore_chunk=True):
|
||||
if test_config["precision"] == "fp32":
|
||||
atol, rtol = 1e-5, 1e-3
|
||||
else:
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
|
||||
if org_model.__class__.__name__ == "CohereModel":
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||
|
||||
# check weights
|
||||
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
|
||||
if test_config["precision"] == "fp32":
|
||||
atol, rtol = 1e-4, 1e-3
|
||||
else:
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
check_weight(
|
||||
command_model, shard_command_model, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False
|
||||
)
|
||||
|
||||
# check grads
|
||||
check_all_grad_tensors(grads_to_check)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize(
|
||||
"test_config",
|
||||
[
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 1,
|
||||
"num_microbatches": 1,
|
||||
"enable_sequence_parallelism": True,
|
||||
"sequence_parallelism_mode": "ring",
|
||||
"enable_flash_attention": True,
|
||||
"use_lazy_init": True,
|
||||
"zero_stage": 2,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
},
|
||||
{
|
||||
"tp_size": 4,
|
||||
"pp_size": 1,
|
||||
"num_microbatches": 1,
|
||||
"enable_sequence_parallelism": True,
|
||||
"sequence_parallelism_mode": "split_gather",
|
||||
"enable_flash_attention": False,
|
||||
"use_lazy_init": True,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
},
|
||||
{
|
||||
"tp_size": 1,
|
||||
"pp_size": 1,
|
||||
"sp_size": 2,
|
||||
"num_microbatches": 1,
|
||||
"enable_sequence_parallelism": True,
|
||||
"sequence_parallelism_mode": "all_to_all",
|
||||
"use_lazy_init": True,
|
||||
"zero_stage": 2,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
},
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 2,
|
||||
"enable_all_optimization": True,
|
||||
"use_lazy_init": True,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
"enable_gradient_checkpointing": True,
|
||||
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(gradient_checkpointing_ratio=0.5),
|
||||
},
|
||||
{
|
||||
"tp_size": 1,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 4,
|
||||
"use_lazy_init": False,
|
||||
"precision": "fp32",
|
||||
"enable_gradient_checkpointing": True,
|
||||
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(num_ckpt_layers_per_stage=[4, 0]),
|
||||
},
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 1,
|
||||
"enable_all_optimization": True,
|
||||
"use_lazy_init": True,
|
||||
"zero_stage": 2,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
},
|
||||
{
|
||||
"tp_size": 1,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 2,
|
||||
"enable_all_optimization": True,
|
||||
"use_lazy_init": True,
|
||||
"zero_stage": 1,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
},
|
||||
],
|
||||
)
|
||||
def run_command_test(test_config):
|
||||
sub_model_zoo = model_zoo.get_sub_registry("transformers_command", "transformers_command_for_casual_lm")
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize(
|
||||
"test_config",
|
||||
[
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 4,
|
||||
"enable_all_optimization": False,
|
||||
"use_lazy_init": False,
|
||||
"precision": "fp32",
|
||||
"initial_scale": 1,
|
||||
},
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 4,
|
||||
"enable_all_optimization": False,
|
||||
"use_lazy_init": False,
|
||||
"precision": "fp16",
|
||||
"zero_stage": 1,
|
||||
"initial_scale": 1,
|
||||
},
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 2,
|
||||
"pp_style": "interleaved",
|
||||
"num_model_chunks": 2,
|
||||
"num_microbatches": 4,
|
||||
"enable_all_optimization": False,
|
||||
"precision": "fp16",
|
||||
"zero_stage": 1,
|
||||
"initial_scale": 1,
|
||||
"enable_gradient_checkpointing": True,
|
||||
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(
|
||||
num_ckpt_layers_per_stage=[0, 1, 2, 2],
|
||||
),
|
||||
},
|
||||
],
|
||||
)
|
||||
def run_command_3d_test(test_config):
|
||||
sub_model_zoo = model_zoo.get_sub_registry("transformers_command", "transformers_command_for_casual_lm")
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_command(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_command_test()
|
||||
|
||||
|
||||
def check_command_3d(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_command_3d_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_command():
|
||||
spawn(check_command, 4)
|
||||
|
||||
|
||||
@pytest.mark.largedist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_command_3d():
|
||||
spawn(check_command_3d, 8)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_command()
|
||||
test_command_3d()
|
Reference in New Issue
Block a user