[zero] add chunk init function for users (#1729)

* add chunk manager init function

* fix unit tests

* add comment

* add flush=True
This commit is contained in:
HELSON
2022-10-18 16:31:22 +08:00
committed by GitHub
parent 2e1dbfb463
commit f69f9bf223
10 changed files with 691 additions and 629 deletions

View File

@@ -1,3 +1,4 @@
from .chunk import TensorState, TensorInfo, ChunkFullError, Chunk
from .manager import ChunkManager
from .search_utils import clasify_params, search_chunk_configuration
from .chunk import Chunk, ChunkFullError, TensorInfo, TensorState
from .manager import ChunkManager
from .search_utils import clasify_params, search_chunk_configuration
from .utils import init_chunk_manager

View File

@@ -1,100 +1,108 @@
import math
from typing import Dict, List
import numpy as np
import torch.nn as nn
from colossalai.tensor import ColoParameter
def _filter_exlarge_params(model: nn.Module, size_dict: Dict[int, List[int]]) -> None:
"""Filter those parameters whose size is too large from others.
"""
params_size = [p.numel() for p in model.parameters() if not getattr(p, '_ddp_to_ignore', False)]
params_size_arr = np.array(params_size)
std = np.std(params_size_arr)
mean = np.mean(params_size_arr)
upper_limit = mean + 3 * std
for key in size_dict:
org_list = size_dict[key]
size_dict[key] = list(filter(lambda x: x <= upper_limit, org_list))
def _get_unused_byte(size_list: List[int], chunk_size: int) -> int:
"""Get unused byte for a certain chunk size.
"""
acc = 0
left = 0
for s in size_list:
if s > left:
acc += left
left = chunk_size
left -= s
return left + acc
def clasify_params(model: nn.Module) -> Dict[int, List[ColoParameter]]:
params_dict: Dict[int, List[ColoParameter]] = dict()
for param in model.parameters():
assert isinstance(param, ColoParameter), "please init model in the ColoInitContext"
if getattr(param, '_ddp_to_ignore', False):
continue
param_key = param.process_group.dp_world_size()
if param_key not in params_dict:
params_dict[param_key] = []
params_dict[param_key].append(param)
return params_dict
def search_chunk_configuration(
model: nn.Module,
search_range_mb: float,
search_interval_byte: int, # hidden size is the best value for the interval
min_chunk_size_mb: float = 32,
filter_exlarge_params: bool = True) -> Dict:
search_range_byte = round(search_range_mb * 1024**2)
min_chunk_size_byte = round(min_chunk_size_mb * 1024**2)
assert search_range_byte >= 0
params_dict = clasify_params(model)
config_dict: Dict[int, Dict] = dict()
size_dict: Dict[int, List[int]] = dict()
for key in params_dict:
params_list = params_dict[key]
size_list = [p.numel() for p in params_list]
# let small parameters keep gathered in CUDA all the time
total_size = sum(size_list)
if total_size < min_chunk_size_byte:
config_dict[key] = dict(chunk_size=total_size, keep_gathered=True)
else:
size_dict[key] = size_list
if filter_exlarge_params:
_filter_exlarge_params(model, size_dict)
max_size = min_chunk_size_byte
for key in size_dict:
max_size = max(max_size, max(size_dict[key]))
start_size = int(math.ceil(max_size / search_interval_byte) * search_interval_byte)
min_chunk_waste = float('+inf')
best_chunk_size = start_size
for chunk_size in range(start_size, start_size + search_range_byte + 1, search_interval_byte):
temp_waste = 0
for key in size_dict:
temp_waste += _get_unused_byte(size_dict[key], chunk_size)
if temp_waste < min_chunk_waste:
min_chunk_waste = temp_waste
best_chunk_size = chunk_size
for key in params_dict:
if key in config_dict:
continue
config_dict[key] = dict(chunk_size=best_chunk_size, keep_gathered=False)
return config_dict
import math
from typing import Dict, List, Tuple
import numpy as np
import torch.nn as nn
from colossalai.tensor import ColoParameter
def in_ddp(param: nn.Parameter) -> bool:
return not getattr(param, '_ddp_to_ignore', False)
def _filter_exlarge_params(model: nn.Module, size_dict: Dict[int, List[int]]) -> None:
"""Filter those parameters whose size is too large from others.
"""
params_size = [p.numel() for p in model.parameters() if in_ddp(p)]
params_size_arr = np.array(params_size)
std = np.std(params_size_arr)
mean = np.mean(params_size_arr)
upper_limit = mean + 3 * std
for key in size_dict:
org_list = size_dict[key]
size_dict[key] = list(filter(lambda x: x <= upper_limit, org_list))
def _get_unused_byte(size_list: List[int], chunk_size: int) -> int:
"""Get unused byte for a certain chunk size.
"""
acc = 0
left = 0
for s in size_list:
if s > left:
acc += left
left = chunk_size
left -= s
return left + acc
def clasify_params(model: nn.Module) -> Dict[int, List[ColoParameter]]:
"""Clasify each parameter by its size of DP group.
"""
params_dict: Dict[int, List[ColoParameter]] = dict()
for param in model.parameters():
assert isinstance(param, ColoParameter), "please init model in the ColoInitContext"
if not in_ddp(param):
continue
param_key = param.process_group.dp_world_size()
if param_key not in params_dict:
params_dict[param_key] = []
params_dict[param_key].append(param)
return params_dict
def search_chunk_configuration(
model: nn.Module,
search_range_mb: float,
search_interval_byte: int, # hidden size is the best value for the interval
min_chunk_size_mb: float = 32,
filter_exlarge_params: bool = True) -> Tuple[Dict, int]:
search_range_byte = round(search_range_mb * 1024**2)
min_chunk_size_byte = round(min_chunk_size_mb * 1024**2)
assert search_range_byte >= 0
params_dict = clasify_params(model)
config_dict: Dict[int, Dict] = dict()
size_dict: Dict[int, List[int]] = dict()
for key in params_dict:
params_list = params_dict[key]
size_list = [p.numel() for p in params_list]
# let small parameters keep gathered in CUDA all the time
total_size = sum(size_list)
if total_size < min_chunk_size_byte:
config_dict[key] = dict(chunk_size=total_size, keep_gathered=True)
else:
size_dict[key] = size_list
if filter_exlarge_params:
_filter_exlarge_params(model, size_dict)
max_size = min_chunk_size_byte
for key in size_dict:
max_size = max(max_size, max(size_dict[key]))
start_size = int(math.ceil(max_size / search_interval_byte) * search_interval_byte)
min_chunk_waste = float('+inf')
best_chunk_size = start_size
for chunk_size in range(start_size, start_size + search_range_byte + 1, search_interval_byte):
temp_waste = 0
for key in size_dict:
temp_waste += _get_unused_byte(size_dict[key], chunk_size)
if temp_waste < min_chunk_waste:
min_chunk_waste = temp_waste
best_chunk_size = chunk_size
for key in params_dict:
if key in config_dict:
continue
config_dict[key] = dict(chunk_size=best_chunk_size, keep_gathered=False)
return config_dict, min_chunk_waste

View File

@@ -0,0 +1,58 @@
from time import time
from typing import Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.gemini.chunk import ChunkManager
from colossalai.gemini.chunk.search_utils import in_ddp, search_chunk_configuration
def init_chunk_manager(model: nn.Module,
init_device: Optional[torch.device] = None,
hidden_dim: Optional[int] = None,
search_range_mb: Optional[float] = None,
min_chunk_size_mb: Optional[float] = None,
filter_exlarge_params: Optional[bool] = None) -> ChunkManager:
kwargs_dict = dict()
if hidden_dim:
search_interval_byte = hidden_dim
else:
search_interval_byte = 1024 # 1kb
kwargs_dict["search_interval_byte"] = search_interval_byte
if search_range_mb:
kwargs_dict["search_range_mb"] = search_range_mb
if min_chunk_size_mb:
kwargs_dict["min_chunk_size_mb"] = min_chunk_size_mb
if filter_exlarge_params:
kwargs_dict["filter_exlarge_params"] = filter_exlarge_params
params_sizes = [p.numel() for p in model.parameters() if in_ddp(p)]
total_size = sum(params_sizes) / 1024**2
dist.barrier()
begine = time()
config_dict, wasted_size = search_chunk_configuration(model, **kwargs_dict)
dist.barrier()
end = time()
span_s = end - begine
wasted_size /= 1024**2
if dist.get_rank() == 0:
print("searching chunk configuration is completed in {:.2f} s.\n".format(span_s),
"used number: {:.2f} MB, wasted number: {:.2f} MB\n".format(total_size, wasted_size),
"total wasted percentage is {:.2f}%".format(100 * wasted_size / (total_size + wasted_size)),
sep='',
flush=True)
dist.barrier()
chunk_manager = ChunkManager(config_dict, init_device)
return chunk_manager