[moe] support optimizer checkpoint (#5015)

* Refactor MoE Manager setup method

* unshard optim ckpt

* optim io

* update transformer version

* update requirements

* update ckpt

* update ckpt

* update ckpt

* fix engine

* fix engine
This commit is contained in:
Xuanlei Zhao
2023-11-08 23:07:03 +08:00
committed by GitHub
parent 67f5331754
commit f71e63b0f3
20 changed files with 738 additions and 150 deletions

View File

@@ -6,10 +6,9 @@ import torch.nn as nn
import colossalai
from colossalai.moe import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import sync_moe_model_param
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
from tests.test_moe.moe_utils import MoeGradientHandler, assert_not_equal_in_group
from tests.test_moe.moe_utils import MoeGradientHandler
BATCH_SIZE = 4
DIM = 16
@@ -25,7 +24,7 @@ def run_test(rank, world_size, port):
backend="nccl",
)
MOE_MANAGER.setup(42, parallel="EP") # MOE initialization
MOE_MANAGER.setup(parallel="EP") # MOE initialization
num_experts_list = [1, 2, 4]
layer_list = []
for num_experts in num_experts_list:
@@ -41,15 +40,6 @@ def run_test(rank, world_size, port):
model = nn.ModuleList(layer_list)
model = model.to(get_current_device())
dist_dict = MOE_MANAGER.parallel_info_dict
assert_not_equal_in_group(layer_list[0].experts.wi.data, dist_dict[1].dp_group)
assert_not_equal_in_group(layer_list[0].experts.wo.data, dist_dict[1].dp_group)
assert_not_equal_in_group(layer_list[1].experts.wi.data, dist_dict[2].dp_group)
assert_not_equal_in_group(layer_list[1].experts.wo.data, dist_dict[2].dp_group)
assert_not_equal_in_group(layer_list[2].experts.wi.data, dist_dict[4].dp_group)
assert_not_equal_in_group(layer_list[2].experts.wo.data, dist_dict[4].dp_group)
sync_moe_model_param(model)
assert_equal_in_group(layer_list[0].experts.wi.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[0].experts.wo.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.wi.data, dist_dict[2].dp_group)

View File

@@ -20,21 +20,23 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
# Here we do not need TF32, since it brings absolute error on results
torch.backends.cuda.matmul.allow_tf32 = False
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
local_rank = dist.get_rank()
MOE_MANAGER.setup(42, parallel="EP") # MOE environment initialization
MOE_MANAGER.setup(parallel="EP") # MOE environment initialization
MOE_MANAGER.reset_loss()
torch.manual_seed(rs + local_rank) # set each process has different random seed
torch.manual_seed(rs + local_rank) # set each process has different random seed
# get randomized data
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
layer = SparseMLP(hidden_size=hidden_size,
intermediate_size=hidden_size * 2,
num_experts=NUM_EXPERTS,
router_top_k=topk,
router_capacity_factor_train=1.0)
layer = SparseMLP(
hidden_size=hidden_size,
intermediate_size=hidden_size * 2,
num_experts=NUM_EXPERTS,
router_top_k=topk,
router_capacity_factor_train=1.0,
)
layer = layer.to(get_current_device())
if data_type == torch.float16:
layer = layer.half()
@@ -55,7 +57,7 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
layer.gate_weight.grad.zero_()
layer.enable_kernel = True
new_out = layer(tokens) # get outputs through colossal kernel
new_out = layer(tokens) # get outputs through colossal kernel
if data_type == torch.float32:
check_equal(old_out, new_out)
@@ -90,5 +92,5 @@ def test_moe_kernel(rs, hidden_size, data_type, topk):
spawn(run_routing, 4, rs=rs, hidden_size=hidden_size, data_type=data_type, topk=topk)
if __name__ == '__main__':
if __name__ == "__main__":
test_moe_kernel(2, 256, torch.float16, 2)

View File

@@ -12,53 +12,112 @@ import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.moe.manager import MOE_MANAGER
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing import DummyDataloader, check_state_dict_equal, rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
sys.path.append(os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
"examples/language/openmoe",
))
sys.path.append(
os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
"examples/language/openmoe",
)
)
OpenMoeForCausalLM = importlib.import_module("model.modeling_openmoe").OpenMoeForCausalLM
set_openmoe_args = importlib.import_module("model.modeling_openmoe").set_openmoe_args
OpenMoeForCausalLMPolicy = importlib.import_module("model.openmoe_policy").OpenMoeForCausalLMPolicy
def data_gen_fn(batch_size: int = 2, max_length: int = 4, vocab_size: int = 20):
input_ids = torch.randint(0, vocab_size, (batch_size, max_length), device=get_current_device())
attention_mask = torch.ones_like(input_ids)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids,
}
def run_fwd_bwd(
model, data, label, criterion, optimizer, enable_autocast=False, pipeline=False, booster=None, plugin=None
):
model.train()
if pipeline:
train_dataloader_iter = DummyDataloader(data_gen_fn, length=1)
is_pp_last_stage = booster.plugin.stage_manager.is_last_stage()
y = booster.execute_pipeline(
train_dataloader_iter,
model,
lambda x, y: x.loss,
optimizer,
return_loss=True,
return_outputs=True,
)
# Backward and optimize
if is_pp_last_stage:
loss = y["loss"]
else:
if criterion:
y = model(data).logits
loss = criterion(y)
else:
loss = model(data, label)
loss = loss.float()
if optimizer is not None:
optimizer.backward(loss)
else:
loss.backward()
return y
def get_config():
config = LlamaConfig(
vocab_size=300,
hidden_size=16,
intermediate_size=32,
num_hidden_layers=4,
num_hidden_layers=2,
num_attention_heads=2,
head_dim=4,
dropout_rate=0.0,
hidden_act="swiglu",
)
set_openmoe_args(config, num_experts=16, moe_layer_interval=1)
set_openmoe_args(config, num_experts=8, moe_layer_interval=1)
return config
def get_model(parallel):
config = get_config()
model = OpenMoeForCausalLM(config)
optim = torch.optim.Adam(model.parameters())
if parallel == None:
plugin = MoeHybridParallelPlugin(
tp_size=1,
pp_size=1,
zero_stage=0,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "zero_ep":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "ep":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "ep_zero":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
extra_dp_size=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "hybrid":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=2,
zero_stage=1,
@@ -66,54 +125,77 @@ def get_model(parallel):
custom_policy=OpenMoeForCausalLMPolicy(),
)
booster = Booster(plugin=plugin)
model, _, _, _, _ = booster.boost(model=model)
return model, booster
model, optim, _, _, _ = booster.boost(model=model, optimizer=optim)
return model, booster, optim
def _test_moe_checkpoint(parallel, shard):
def _test_moe_checkpoint(rank, parallel):
if parallel == None:
MOE_MANAGER.setup(
seed=42,
parallel=None,
)
elif parallel == "zero2_ep":
elif parallel == "ep":
MOE_MANAGER.setup(
seed=42,
parallel="EP",
)
elif parallel == "ep_zero":
MOE_MANAGER.setup(
parallel="EP",
max_ep_size=2,
)
elif parallel == "hybrid":
MOE_MANAGER.setup(
seed=42,
parallel="EP",
mode="fixed",
fixed_dp_size=1,
fixed_ep_size=2,
fixed_pp_size=2,
)
model1, booster1 = get_model(parallel)
model2, booster2 = get_model(parallel)
model1, booster1, optim1 = get_model(parallel)
model2, booster2, optim2 = get_model(parallel)
model3, booster3, optim3 = get_model(parallel)
if shard:
booster1.save_model(model1, "./tmp_ckpt", shard=True, size_per_shard=1)
booster2.load_model(model2, "./tmp_ckpt")
# param ckpt
# shard
booster1.save_model(model1, "./tmp_ckpt1", shard=True, size_per_shard=1)
booster2.load_model(model2, "./tmp_ckpt1")
# unshard
booster1.save_model(model1, "./tmp_ckpt1.pth")
booster3.load_model(model3, "./tmp_ckpt1.pth")
# check
check_state_dict_equal(model1.state_dict(), model2.state_dict(), False)
check_state_dict_equal(model1.state_dict(), model3.state_dict(), False)
# optim ckpt
criterion = lambda x: x.mean()
data = torch.randint(0, 4, (2, 4)).cuda()
label = torch.randint(0, 4, (2,)).cuda()
if parallel == "hybrid":
kwargs = {"pipeline": True, "booster": booster1, "plugin": booster1.plugin}
else:
booster1.save_model(model1, "tmp_ckpt.pth")
booster2.load_model(model2, "tmp_ckpt.pth")
state1 = model1.state_dict()
state2 = model2.state_dict()
for k, v in state1.items():
u = state2.get(k)
assert torch.equal(u.data, v.data)
kwargs = {}
run_fwd_bwd(model1, data, label, criterion, optim1, **kwargs)
optim1.step()
optim1.zero_grad()
# shard
booster1.save_optimizer(optim1, "./tmp_ckpt2", shard=True, size_per_shard=1)
dist.barrier()
booster2.load_optimizer(optim2, "./tmp_ckpt2")
# unshard
booster1.save_optimizer(optim1, "./tmp_ckpt2.pth")
booster3.load_optimizer(optim3, "./tmp_ckpt2.pth")
# check
check_state_dict_equal(optim1.optim.state_dict(), optim2.optim.state_dict(), False)
check_state_dict_equal(optim1.optim.state_dict(), optim3.optim.state_dict(), False)
if dist.get_rank() == 0:
if shard:
shutil.rmtree("./tmp_ckpt")
else:
os.remove("tmp_ckpt.pth")
shutil.rmtree("./tmp_ckpt1")
shutil.rmtree("./tmp_ckpt2")
os.remove("./tmp_ckpt1.pth")
os.remove("./tmp_ckpt2.pth")
def _run_dist(rank, world_size, port, parallel, shard):
def _run_dist(rank, world_size, port, parallel):
colossalai.launch(
config=dict(),
rank=rank,
@@ -122,17 +204,16 @@ def _run_dist(rank, world_size, port, parallel, shard):
port=port,
backend="nccl",
)
_test_moe_checkpoint(parallel, shard)
_test_moe_checkpoint(rank, parallel)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@pytest.mark.parametrize("parallel", [None, "zero_ep", "hybrid"])
@pytest.mark.parametrize("shard", [True, False])
@pytest.mark.parametrize("parallel", [None, "ep", "ep_zero", "hybrid"])
@rerun_if_address_is_in_use()
def test_moe_checkpoint(world_size, parallel, shard):
spawn(_run_dist, world_size, parallel=parallel, shard=shard)
def test_moe_checkpoint(world_size, parallel):
spawn(_run_dist, world_size, parallel=parallel)
if __name__ == "__main__":
test_moe_checkpoint(world_size=4, parallel="hybrid", shard=True)
test_moe_checkpoint(world_size=4, parallel="hybrid")

View File

@@ -14,16 +14,16 @@ from tests.test_moe.moe_utils import MoeGradientHandler, sync_local_from_ep, syn
def run_test(rank: int, world_size: int, port: int, num_experts: int, batch_size: int, dim: int, seed: int):
assert batch_size % world_size == 0
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed, parallel=None)
MOE_MANAGER.setup(parallel=None)
local_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed, parallel="EP")
MOE_MANAGER.setup(parallel="EP")
ep_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed, parallel="TP")
MOE_MANAGER.setup(parallel="TP")
tp_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
ep_model = ep_model.to(get_current_device())
tp_model = tp_model.to(get_current_device())
@@ -44,7 +44,7 @@ def run_test(rank: int, world_size: int, port: int, num_experts: int, batch_size
torch.cuda.manual_seed(seed)
tp_data = torch.randn(batch_size, dim, device=get_current_device())
micro_batch_size = batch_size // world_size
ep_data = tp_data.detach()[micro_batch_size * rank:micro_batch_size * (rank + 1)]
ep_data = tp_data.detach()[micro_batch_size * rank : micro_batch_size * (rank + 1)]
out_local = local_model(tp_data)
MOE_MANAGER.reset_loss()
@@ -52,8 +52,8 @@ def run_test(rank: int, world_size: int, port: int, num_experts: int, batch_size
MOE_MANAGER.reset_loss()
out_ep = ep_model(ep_data)
MOE_MANAGER.reset_loss()
assert torch.allclose(out_ep, out_tp[micro_batch_size * rank:micro_batch_size * (rank + 1)])
assert torch.allclose(out_ep, out_local[micro_batch_size * rank:micro_batch_size * (rank + 1)])
assert torch.allclose(out_ep, out_tp[micro_batch_size * rank : micro_batch_size * (rank + 1)])
assert torch.allclose(out_ep, out_local[micro_batch_size * rank : micro_batch_size * (rank + 1)])
out_local.mean().backward()
out_tp.mean().backward()
@@ -77,5 +77,5 @@ def test_moe_ep_tp(num_experts: int, batch_size: int, dim: int, seed: int):
spawn(run_test, 2, num_experts=num_experts, batch_size=batch_size, dim=dim, seed=seed)
if __name__ == '__main__':
if __name__ == "__main__":
test_moe_ep_tp(num_experts=8, batch_size=8, dim=256, seed=42)

View File

@@ -15,7 +15,7 @@ INTERMEDIATE_SIZE = 8
def run_moe_init(expert_parallel):
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed=42, parallel=expert_parallel)
MOE_MANAGER.setup(parallel=expert_parallel)
expert_args = dict(
hidden_size=HIDDEN_SIZE,
intermediate_size=INTERMEDIATE_SIZE,

View File

@@ -35,13 +35,13 @@ def run_zero_optim_test(local_rank, world_size, stage=1):
label = torch.randint(0, 4, (16,)).cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed=42, parallel=None)
MOE_MANAGER.setup(parallel=None)
torch_model = MoeModel()
torch_optimizer = torch.optim.Adam(torch_model.parameters())
torch_model = torch_model.cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed=42, max_ep_size=2, use_ep_inside=False, parallel="EP")
MOE_MANAGER.setup(max_ep_size=2, use_ep_inside=False, parallel="EP")
zero_model = MoeModel()
extra_dp_group = MOE_MANAGER.parallel_info_dict[2].dp_group
ep_rank = dist.get_rank(MOE_MANAGER.parallel_info_dict[2].ep_group)

View File

@@ -45,7 +45,6 @@ def run_zero_optim_test(local_rank, world_size, stage=1):
MOE_MANAGER.__init__()
MOE_MANAGER.setup(
seed=42,
parallel="EP",
)
zero_model = MoeModel(enable_load_balance=True)
@@ -55,7 +54,7 @@ def run_zero_optim_test(local_rank, world_size, stage=1):
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed=42, parallel="EP")
MOE_MANAGER.setup(parallel="EP")
torch_model = MoeModel()
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
torch_param.data.copy_(zero_param.data)
@@ -94,7 +93,7 @@ def run_zero_optim_test(local_rank, world_size, stage=1):
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
zero_optimizer.step()
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer)
assert torch.allclose(zero_out, torch_out), f"zero_out:{zero_out}\ntorch_out{torch_out}"
assert torch.allclose(zero_out, torch_out, atol=3e-5), f"zero_out:{zero_out}\ntorch_out{torch_out}"
def run_hybrid_zero_optim_test(local_rank, world_size, stage=1):
@@ -103,14 +102,13 @@ def run_hybrid_zero_optim_test(local_rank, world_size, stage=1):
label = torch.randint(0, 4, (16,)).cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(seed=42, parallel=None)
MOE_MANAGER.setup(parallel=None)
torch_model = MoeModel()
torch_optimizer = torch.optim.Adam(torch_model.parameters())
torch_model = torch_model.cuda()
MOE_MANAGER.__init__()
MOE_MANAGER.setup(
seed=42,
max_ep_size=2,
use_ep_inside=False,
parallel="EP",

View File

@@ -88,7 +88,7 @@ def run_zero_test(local_rank, world_size, stage=1):
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.setup(seed=42, parallel="EP")
MOE_MANAGER.setup(parallel="EP")
seed_all(42 + rank)
run_zero_test(rank, world_size, stage=1)
run_zero_test(rank, world_size, stage=2)

View File

@@ -76,7 +76,7 @@ def run_zero_optim_test(local_rank, world_size, stage=1):
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.setup(seed=42, parallel="EP")
MOE_MANAGER.setup(parallel="EP")
run_zero_optim_test(rank, world_size, stage=1)
run_zero_optim_test(rank, world_size, stage=2)