[moe] fix MoE bugs (#1628)

* remove forced FP32 modules

* correct no_shard-contexts' positions
This commit is contained in:
HELSON
2022-09-22 13:56:30 +08:00
committed by GitHub
parent 38c68b5b9a
commit f7f2248771
7 changed files with 26 additions and 33 deletions

View File

@@ -24,6 +24,7 @@ class MoeExperts(nn.Module):
self.num_local_experts, self.dist_info = MOE_CONTEXT.get_info(num_experts)
@no_shard_zero_decrator(is_replicated=False)
class Experts(MoeExperts):
"""A wrapper class to create experts. It will create E experts across the
moe model parallel group, where E is the number of experts. Every expert
@@ -35,7 +36,6 @@ class Experts(MoeExperts):
expert_args: Args used to initialize experts, the args could be found in corresponding expert class
"""
@no_shard_zero_decrator(is_replicated=False)
def __init__(self, expert_cls: Type[nn.Module], num_experts: int, **expert_args):
super().__init__("all_to_all", num_experts)

View File

@@ -228,6 +228,7 @@ class FP32LinearGate(nn.Module):
return F.linear(x, self.weight)
@no_shard_zero_decrator(is_replicated=True)
class MoeLayer(nn.Module):
"""A MoE layer, that puts its input tensor to its gate and uses the output logits
to router all tokens, is mainly used to exchange all tokens for every expert across
@@ -241,12 +242,11 @@ class MoeLayer(nn.Module):
experts (:class:`torch.nn.Module`): Instance of experts generated by Expert.
"""
@no_shard_zero_decrator(is_replicated=True)
def __init__(self, dim_model: int, num_experts: int, router: nn.Module, experts: MoeExperts):
super().__init__()
self.d_model = dim_model
self.num_experts = num_experts
self.gate = FP32LinearGate(dim_model, num_experts)
self.gate_weight = torch.nn.Parameter(torch.empty(num_experts, dim_model))
self.router = router
self.experts = experts
self.use_kernel = True if COL_MOE_KERNEL_FLAG and MOE_CONTEXT.use_kernel_optim else False
@@ -254,16 +254,14 @@ class MoeLayer(nn.Module):
self.ep_size = experts.dist_info.ep_size
self.num_local_experts = experts.num_local_experts
nn.init.trunc_normal_(self.gate_weight, std=math.sqrt(0.1 / dim_model))
def a2a_process(self, dispatch_data: torch.Tensor):
expert_input = AllToAll.apply(dispatch_data, self.ep_group)
input_shape = expert_input.shape
expert_input = expert_input.reshape(self.ep_size, self.num_local_experts, -1, self.d_model)
expert_output = self.experts(expert_input)
expert_output = expert_output.reshape(input_shape)
expert_output = AllToAll.apply(expert_output, self.ep_group)
return expert_output
@@ -274,16 +272,22 @@ class MoeLayer(nn.Module):
return expert_out
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
# reshape the input tokens
tokens = inputs.reshape(-1, self.d_model)
fp32_input = tokens.to(torch.float32) if inputs.dtype != torch.float32 else tokens
gate_output = self.gate(fp32_input)
router_res = self.router(inputs=gate_output, use_kernel=self.use_kernel, ep_group=self.ep_group)
# the data type of the inputs in the gating should be fp32
fp32_input = tokens.to(torch.float)
fp32_weight = self.gate_weight.to(torch.float)
gate_output = F.linear(fp32_input, fp32_weight)
# the result from the router
route_result_list = self.router(inputs=gate_output, use_kernel=self.use_kernel, ep_group=self.ep_group)
if self.use_kernel:
dispatch_data = MoeDispatch.apply(tokens, *router_res[1:])
dispatch_data = MoeDispatch.apply(tokens, *route_result_list[1:])
dispatch_data = dispatch_data.reshape(self.num_experts, -1, self.d_model)
else:
sec_mask_f = router_res[1].type_as(inputs)
sec_mask_f = route_result_list[1].type_as(inputs)
dispatch_data = torch.matmul(sec_mask_f.permute(1, 2, 0), tokens)
# dispatch_data [e, c, h]
@@ -295,12 +299,11 @@ class MoeLayer(nn.Module):
raise NotImplementedError("This kind of communication has not been implemented yet.\n Please use Experts "
"build function.")
# expert_output [e, c, h]
if self.use_kernel:
expert_output = expert_output.reshape(-1, self.d_model)
ans = MoeCombine.apply(expert_output, *router_res)
ans = MoeCombine.apply(expert_output, *route_result_list)
else:
combine_weights = router_res[0].type_as(inputs)
combine_weights = route_result_list[0].type_as(inputs)
combine_weights = combine_weights.view(combine_weights.shape[0], -1)
expert_output = expert_output.view(-1, expert_output.shape[-1])
ans = torch.matmul(combine_weights, expert_output)

View File

@@ -258,7 +258,8 @@ def no_shard_zero_decrator(is_replicated: bool = True):
def _no_shard(*args, **kwargs):
with no_shard_zero_context(is_replicated):
init_func(*args, **kwargs)
ret = init_func(*args, **kwargs)
return ret
return _no_shard