diff --git a/colossalai/booster/plugin/hybrid_parallel_plugin.py b/colossalai/booster/plugin/hybrid_parallel_plugin.py index fc04f3ecd..3fbeebcc4 100644 --- a/colossalai/booster/plugin/hybrid_parallel_plugin.py +++ b/colossalai/booster/plugin/hybrid_parallel_plugin.py @@ -243,9 +243,11 @@ class HybridParallelPlugin(PipelinePluginBase): enable_all_optimization (bool, optional): Whether to switch on all the optimizations supported by Shardformer. Currently all the optimization methods include fused normalization, flash attention and JIT. Defaults to False. - enable_fused_normalization (bool, optional): Whether to switch on fused normalization. Defaults to False. - enable_flash_attention (bool, optional): Whether to switch on flash attention. Defaults to False. - enable_jit_fused (bool, optional): Whether to switch on JIT. Default to Falase. + enable_fused_normalization (bool, optional): Whether to switch on fused normalization in Shardformer. Defaults to False. + enable_flash_attention (bool, optional): Whether to switch on flash attention in Shardformer. Defaults to False. + enable_jit_fused (bool, optional): Whether to switch on JIT in Shardformer. Default to False. + enable_sequence_parallelism (bool): Whether to turn on sequence parallelism in Shardformer. Defaults to False. + enable_sequence_overlap (bool): Whether to turn on sequence overlap in Shardformer. Defaults to False. num_microbatches (int, optional): Number of microbatches when using pipeline parallelism. Defaults to None. microbatch_size (int, optional): Microbatch size when using pipeline parallelism. Either ``num_microbatches`` or ``microbatch_size`` should be provided if using pipeline. diff --git a/colossalai/shardformer/README.md b/colossalai/shardformer/README.md index b1573ae16..4bd7d5208 100644 --- a/colossalai/shardformer/README.md +++ b/colossalai/shardformer/README.md @@ -60,18 +60,28 @@ sharded_model, shared_params = shard_former.optimize(model).to('cuda') # do everything like normal ... ``` -shardformer configuration -`tensor_parallel_process_group`: the process group of tensor parallelism, it's necessary when using tensor parallel. -`pipeline_stage_manager`: If using pipeline parallelism, it's necessary to specify a pipeline stage manager for inter-process communication in pipeline parallelism. -{{ autodoc:colossalai.pipeline.stage_manager.PipelineStageManager }} -`enable_tensor_parallelism`: using tensor parallel, partition the model along the columns or along the rows -`enable_fused_normalization`: using apex fused layernorm -`enable_flash_attention`: using flash attention -`enable_jit_fused`: using jit fused operators -`enable_sequence_parallelism`: using sequence parallelism, partition these non-tensor parallel regions along the sequence dimension. -`enable_sequence_overlap`: overlap the computation and communication in the sequence parallelism, it's used with `enable_sequence_parallelism`. +Following are the description `ShardConfig`'s arguments: +- `tensor_parallel_process_group`: The process group of tensor parallelism, it's necessary when using tensor parallel. Defaults to None, which is the global process group. + +- `pipeline_stage_manager`: If using pipeline parallelism, it's necessary to specify a pipeline stage manager for inter-process communication in pipeline parallelism. Defaults to None, which means not using pipeline parallelism. + +- `enable_tensor_parallelism`: Whether to use tensor parallelism. Defaults to True. + +- `enable_fused_normalization`: Whether to use fused layernorm. Defaults to False. + +- `enable_flash_attention`: Whether to switch on flash attention. Defaults to False. + +- `enable_jit_fused`: Whether to switch on JIT fused operators. Defaults to False. + +- `enable_sequence_parallelism`: Whether to turn on sequence parallelism, which partitions non-tensor-parallel regions along the sequence dimension. Defaults to False. + +- `enable_sequence_overlap`: Whether to turn on sequence overlap, wheich overlap the computation and communication in sequence parallelism. It can only be used when `enable_sequence_parallelism` is True. Defaults to False. + +- `enable_all_optimization`: Whether to turn on all optimization tools including `fused normalizaion`, `flash attention`, `JIT fused operators`, `sequence parallelism` and `sequence overlap`. Defaults to False. + +- `inference_only`: Whether only doing forward passing. Defaults to False. ### Write your own policy diff --git a/colossalai/shardformer/shard/shard_config.py b/colossalai/shardformer/shard/shard_config.py index 4380ac308..0b6e16409 100644 --- a/colossalai/shardformer/shard/shard_config.py +++ b/colossalai/shardformer/shard/shard_config.py @@ -15,32 +15,28 @@ class ShardConfig: The config for sharding the huggingface model Args: - tensor_parallel_process_group (Optional[ProcessGroup]): The process group for tensor parallelism, defaults to None, which is the global process group. - pipeline_stage_manager (Optional[PipelineStageManager]): The pipeline stage manager, defaults to None, which means no pipeline. - enable_tensor_parallelism (bool): Whether to turn on tensor parallelism, default is True. - enable_fused_normalization (bool): Whether to use fused layernorm, default is False. - enable_all_optimization (bool): Whether to turn on all optimization, default is False. - enable_sequence_parallelism (bool): Whether to turn on sequence parallelism, default is False. - enable_sequence_overlap (bool): Whether to turn on sequence overlap, default is False. + tensor_parallel_process_group (Optional[ProcessGroup]): The process group of tensor parallelism, it's necessary when using tensor parallel. Defaults to None, which is the global process group. + pipeline_stage_manager (Optional[PipelineStageManager]): If using pipeline parallelism, it's necessary to specify a pipeline stage manager for inter-process communication in pipeline parallelism. Defaults to None, which means not using pipeline parallelism. + enable_tensor_parallelism (bool): Whether to use tensor parallelism. Defaults to True. + enable_fused_normalization (bool): Whether to use fused layernorm. Defaults to False. + enable_flash_attention (bool, optional): Whether to switch on flash attention. Defaults to False. + enable_jit_fused (bool, optional): Whether to switch on JIT fused operators. Defaults to False. + enable_sequence_parallelism (bool): Whether to turn on sequence parallelism, which partitions non-tensor-parallel regions along the sequence dimension. Defaults to False. + enable_sequence_overlap (bool): Whether to turn on sequence overlap, wheich overlap the computation and communication in sequence parallelism. It can only be used when enable_sequence_parallelism is True. Defaults to False. + enable_all_optimization (bool): Whether to turn on all optimization tools including 'fused normalizaion', 'flash attention', 'JIT fused operators', 'sequence parallelism' and 'sequence overlap'. Defaults to False. + inference_only (bool): Whether only doing forward passing. Defaults to False. """ tensor_parallel_process_group: Optional[ProcessGroup] = None pipeline_stage_manager: Optional[PipelineStageManager] = None enable_tensor_parallelism: bool = True enable_fused_normalization: bool = False - enable_all_optimization: bool = False enable_flash_attention: bool = False enable_jit_fused: bool = False enable_sequence_parallelism: bool = False enable_sequence_overlap: bool = False + enable_all_optimization: bool = False inference_only: bool = False - enable_sequence_parallelism: bool = False - enable_sequence_overlap: bool = False - - # pipeline_parallel_size: int - # data_parallel_size: int # tensor_parallel_mode: Literal['1d', '2d', '2.5d', '3d'] - # inference_only: bool = True - # gather_output: bool = True @property def tensor_parallel_size(self): diff --git a/docs/source/en/basics/booster_api.md b/docs/source/en/basics/booster_api.md index 796270751..392251ef0 100644 --- a/docs/source/en/basics/booster_api.md +++ b/docs/source/en/basics/booster_api.md @@ -9,7 +9,8 @@ Author: [Mingyan Jiang](https://github.com/jiangmingyan), [Jianghai Chen](https: **Example Code** -- [Train with Booster](https://github.com/hpcaitech/ColossalAI/blob/main/examples/tutorial/new_api/cifar_resnet) +- [Train ResNet on CIFAR-10 with Booster](https://github.com/hpcaitech/ColossalAI/blob/main/examples/tutorial/new_api/cifar_resnet) +- [Train LLaMA-1/2 on RedPajama with Booster](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/llama2) ## Introduction diff --git a/docs/source/en/basics/booster_plugins.md b/docs/source/en/basics/booster_plugins.md index 7a88dc170..d7532b0ce 100644 --- a/docs/source/en/basics/booster_plugins.md +++ b/docs/source/en/basics/booster_plugins.md @@ -73,7 +73,7 @@ More details can be found in [Pytorch Docs](https://pytorch.org/docs/main/fsdp.h This plugin implements the combination of various parallel training strategies and optimization tools. The features of HybridParallelPlugin can be generally divided into four parts: -1. Shardformer: This plugin provides an entrance to Shardformer, which controls model sharding under tensor parallel and pipeline parallel setting. Shardformer also overloads the logic of model's forward/backward process to ensure the smooth working of tp/pp. Also, optimization tools including fused normalization, flash attention (xformers), JIT and sequence parallel are injected into the overloaded forward/backward method by Shardformer. +1. Shardformer: This plugin provides an entrance to Shardformer, which controls model sharding under tensor parallel and pipeline parallel setting. Shardformer also overloads the logic of model's forward/backward process to ensure the smooth working of tp/pp. Also, optimization tools including fused normalization, flash attention (xformers), JIT and sequence parallel are injected into the overloaded forward/backward method by Shardformer. More details can be found in chapter [Shardformer Doc](../features/shardformer.md). 2. Mixed Precision Training: Support for fp16/bf16 mixed precision training. More details about its arguments configuration can be found in [Mixed Precision Training Doc](../features/mixed_precision_training_with_booster.md). diff --git a/docs/source/en/features/1D_tensor_parallel.md b/docs/source/en/features/1D_tensor_parallel.md index 7157af210..79fe5ddea 100644 --- a/docs/source/en/features/1D_tensor_parallel.md +++ b/docs/source/en/features/1D_tensor_parallel.md @@ -2,6 +2,8 @@ Author: Zhengda Bian, Yongbin Li +> ⚠️ The information on this page is outdated and will be deprecated. Please check [Shardformer](./shardformer.md) for more information. + **Prerequisite** - [Define Your Configuration](../basics/define_your_config.md) - [Configure Parallelization](../basics/configure_parallelization.md) @@ -116,3 +118,5 @@ Output of the first linear layer: torch.Size([16, 512]) Output of the second linear layer: torch.Size([16, 256]) ``` The output of the first linear layer is split into 2 partitions (each has the shape `[16, 512]`), while the second layer has identical outputs across the GPUs. + + diff --git a/docs/source/en/features/shardformer.md b/docs/source/en/features/shardformer.md new file mode 100644 index 000000000..872d00e4a --- /dev/null +++ b/docs/source/en/features/shardformer.md @@ -0,0 +1,143 @@ +# Shardformer + +Author: [Baizhou Zhang](https://github.com/Fridge003) + +**Prerequisite** +- [Paradigms of Parallelism](../concepts/paradigms_of_parallelism.md) +- [Booster API](../basics/booster_api.md) +- [Booster Plugins](../basics/booster_plugins.md) + +**Example Code** +- [Tensor Parallelism with Shardformer](https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/shardformer/examples) +- [Enabling Shardformer using HybridPrallelPlugin](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/bert) + +**Related Paper** +- [Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://arxiv.org/abs/2104.04473) +- [GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism](https://arxiv.org/abs/1811.06965) +- [FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning](https://arxiv.org/abs/2307.08691) +- [Sequence Parallelism: Long Sequence Training from System Perspective](https://arxiv.org/abs/2105.13120) + + +## Introduction + +When training large transformer models such as LLaMa-2 70B or OPT 175B, model parallelism methods that divide a huge model into smaller shards, including tensor parallelism or pipeline parallism, are essential so as to meet the limitation of GPU memory. +However, manually cutting model and rewriting its forward/backword logic could be difficult for users who are not familiar with distributed training. +Meanwhile, the Huggingface transformers library has gradually become users' first choice of model source, and most mainstream large models have been open-sourced in Huggingface transformers model library. + +Out of this motivation, the ColossalAI team develops **Shardformer**, a feature that automatically does preparation of model parallelism (tensor parallelism/pipeline parallelism) for popular transformer models in HuggingFace. +This module aims to make parallelization hassle-free for users who are not from the system background. +Within a few lines of codes, users can turn a model into a state ready for distributed training. +Also, Shardformer contains various optimization tools for acceleration and memory saving during forward/backward pass. + + +## How Shardformer Works + +Generally, Shardformer works through the following four kinds of *replacements*: + +1. Replacing original PyTorch module (e.g. `nn.Linear`, `nn.Embedding`) with a crafted distributed module. +The distributed module keeps the same attributes as the original module but replaces the original parameters with distributed parameters. +Also, new `forward` methods will replace original ones so as to execute distributed computation, such as linear layers' split /gather operations executed under tensor parallelism. +Each distributed module implements its `from_native_module` static method to convert the PyTorch module to its corresponding distributed module. + +2. Replacing attributes of original Huggingface Transformers layers with appropriate attributes for distributed training. +For example, when training LlaMa-2 with tensor parallel size as 2, the attribute `num_heads` of `LlamaDecoderLayer` (the number of attention heads in each layer) should be replaced with `model.config.num_attention_heads // 2`. + +3. Replacing the `forward` methods implemented by original Huggingface +Transformers libraries with our customized `forward` methods. +This replacement is essential for pipeline paralellism, where a customiozed function is needed to pass intermediate hidden states between different pipeline stages. +Also, optimization methods such as flash attention or sequence parallel can be injected into the `forward` process through our customized `forward` method. + +4. Replacing the whole copy of model parameters and optimizer states with incomplete ones controlled by current device (this is why it's called Shardformer). +By executing `ModelSharder.shard` method, current device will only keep the part of model parameters it's supposed to take care of. +To be specific, they should be the assigned parameter shards when using tensor parallelism, or the parameters belonging to current pipeline stage when using pipeline parallelism, or both of them. +All other parameters are released so as to liberate memory usage. +As a result, the optimizer will only compute the states corresponding to these part of parameters, causing the usage of memory to be further saved. + +All of these replacements are implemented with manually written policies and forward functions. +If you want to delve deeper into the design of Shardformer or customize your own Shardformer policies, please refer to our [Shardformer development document](https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/shardformer/README.md) and [pipeline parallelism design](https://github.com/hpcaitech/ColossalAI/discussions/4050) for more details. + +## Usage + +### Shardformer Configuration + +The configuration of Shardformer is controlled by class `ShardConfig`: + +{{ autodoc:colossalai.shardformer.ShardConfig }} + +If you want to enable Apex Fused Layernorm, please install `apex`. +If you want to enable the usage of flash attention, please install `flash_attn`. +In addition, xFormers's `cutlass_op` can serve as a backup for flash attention. + +### Enabling Shardformer + +#### 1. Enabling Shardformer Through Booster (Recommended) + +Enabling `Shardformer` through `Booster` initialized with `HybridParallelPlugin` is the recommended way to awaken the power of Shardformer. +The main reason is that pipeline parallelism cannot successfully work without the calling of `execute_pipeline` method of `Booster`. Besides, `HybridParallelPlugin` provides the capacity to combine the features of `Shardformer` with other useful features, such as mixed precision training or Zero. + +More details about this usage can be found in chapter [Booster API](../basics/booster_api.md) and [Booster Plugins](../basics/booster_plugins.md). + +[Here](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/bert) is an example on how to trigger `Shardformer` through `HybridParallelPlugin`. Please be aware that there's a difference in the way of doing forward and backward between the situation of using pipeline and not using pipeline. + + +#### 2. Enabling Shardformer Through Shardformer APIs (Not Recommended) + +You can also use Shardformer through manually calling Shardformer APIs. However, this usage is not recommended since pipeline parallelism can't run without `Booster`. + +[Here](https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/shardformer/examples/convergence_benchmark.py) +is an example on how to trigger `Shardformer` through calling Shardformer APIs. + + +### Precautions + +1. When enabling pipeline parallel, please don't do the forward/backward pass in the conventional way (`model(input)`, `loss.backward()`), which will cause unexpected errors. Rather, please do forward/backward pass through calling `booster.execute_pipeline` method. + +2. When you use Shardformer to process classification models such as `GPT2ForSequenceClassification`, `ViTForImageClassification`, please ensure that the total number of labels should be integer multiple of tensor parallel size, otherwise Shardformer can't process the classifier layer correctly. A simple fix could be appending dummy labels in transformers config. This bug will be fixed in future version of Shardformer. + +3. The case of training ChatGLM-2 6B is a little special: since Huggingface transformers doesn't officially support ChatGLM at present, please import the configuration/model classes through + ```python + from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig + from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration, ChatGLMModel + ``` + when training ChatGLM-2 with Shardformer, and initialize your model with these imported classes. + + +## Supporting Information + +List of Huggingface transformers model families currently supported by Shardformer: +- LlaMa-1/LlaMa-2 +- GPT2 +- BERT +- OPT +- BLOOM +- T5 +- ViT +- ChatGLM-2 6B +- Whisper + +List of optimization tools currently supported by Shardformer: +- Flash Attention 2 +- JIT Fused Operator +- xFormers +- Fused Layer Normalization +- Sequence Parallel +- Sequence Overlap + +List of model families we plan to support in the near future: +- SAM +- Blip2 +- RoBERTa +- ALBERT +- ERNIE +- GPT Neo +- GPT-J +- BEiT +- SwinTransformer V1/V2 +- qwen + +These lists will grow longer as more models and optimization tools emerge in the future. If you have any suggestions on the models/optimization we should support, please feel free to mention it in [Issues](https://github.com/hpcaitech/ColossalAI/issues) section of our project. + +For more details about compatibility between each optimization tool and each supported model, please refer to chapter Roadmap in our [develop document](https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/shardformer/README.md). + + + diff --git a/docs/source/zh-Hans/basics/booster_api.md b/docs/source/zh-Hans/basics/booster_api.md index 573aab1c8..c59d75d32 100644 --- a/docs/source/zh-Hans/basics/booster_api.md +++ b/docs/source/zh-Hans/basics/booster_api.md @@ -1,4 +1,4 @@ -# booster 使用 +# Booster API 作者: [Mingyan Jiang](https://github.com/jiangmingyan), [Jianghai Chen](https://github.com/CjhHa1), [Baizhou Zhang](https://github.com/Fridge003) @@ -11,7 +11,8 @@ -- [使用 booster 训练](https://github.com/hpcaitech/ColossalAI/blob/main/examples/tutorial/new_api/cifar_resnet) +- [使用Booster在CIFAR-10数据集上训练ResNet](https://github.com/hpcaitech/ColossalAI/blob/main/examples/tutorial/new_api/cifar_resnet) +- [使用Booster在RedPajama数据集上训练Llama-1/2](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/llama2) ## 简介 diff --git a/docs/source/zh-Hans/basics/booster_plugins.md b/docs/source/zh-Hans/basics/booster_plugins.md index 6f731bfac..0ad1cacab 100644 --- a/docs/source/zh-Hans/basics/booster_plugins.md +++ b/docs/source/zh-Hans/basics/booster_plugins.md @@ -74,7 +74,7 @@ Zero-2 不支持局部梯度累积。如果您坚持使用,虽然可以积累 这个插件实现了多种并行训练策略和优化工具的组合。Hybrid Parallel插件支持的功能大致可以被分为以下四个部分: -1. Shardformer: Shardformer负责在张量并行以及流水线并行下切分模型的逻辑,以及前向/后向方法的重载,这个插件为Shardformer功能提供了一个简单易用的接口。与此同时,Shardformer还负责将包括fused normalization, flash attention (xformers), JIT和序列并行在内的各类优化工具融入重载后的前向/后向方法。 +1. Shardformer: Shardformer负责在张量并行以及流水线并行下切分模型的逻辑,以及前向/后向方法的重载,这个插件为Shardformer功能提供了一个简单易用的接口。与此同时,Shardformer还负责将包括fused normalization, flash attention (xformers), JIT和序列并行在内的各类优化工具融入重载后的前向/后向方法。更多关于Shardformer的信息请参考 [Shardformer文档](../features/shardformer.md)。 2. 混合精度训练:插件支持fp16/bf16的混合精度训练。更多关于混合精度训练的参数配置的详细信息请参考 [混合精度训练文档](../features/mixed_precision_training_with_booster.md)。 diff --git a/docs/source/zh-Hans/features/1D_tensor_parallel.md b/docs/source/zh-Hans/features/1D_tensor_parallel.md index 4dd45e878..61982cbb8 100644 --- a/docs/source/zh-Hans/features/1D_tensor_parallel.md +++ b/docs/source/zh-Hans/features/1D_tensor_parallel.md @@ -2,6 +2,8 @@ 作者: Zhengda Bian, Yongbin Li +> ⚠️ 此页面上的信息已经过时并将被废弃。请在[Shardformer](./shardformer.md)页面查阅更新。 + **前置教程** - [定义配置文件](../basics/define_your_config.md) - [并行配置](../basics/configure_parallelization.md) @@ -118,3 +120,5 @@ Output of the first linear layer: torch.Size([16, 512]) Output of the second linear layer: torch.Size([16, 256]) ``` 第一个线性层的输出被划分成2块 (每个形状为 `[16, 512]`), 而第二层在整个 GPU 上的输出是相同的。 + + diff --git a/docs/source/zh-Hans/features/shardformer.md b/docs/source/zh-Hans/features/shardformer.md new file mode 100644 index 000000000..49aa23e2d --- /dev/null +++ b/docs/source/zh-Hans/features/shardformer.md @@ -0,0 +1,121 @@ +# Shardformer + +Author: [Baizhou Zhang](https://github.com/Fridge003) + +**预备知识** +- [并行技术](../concepts/paradigms_of_parallelism.md) +- [Booster API](../basics/booster_api.md) +- [Booster 插件](../basics/booster_plugins.md) + +**示例代码** +- [使用Shardformer进行张量并行训练](https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/shardformer/examples) +- [通过HybridParallelPlugin使用Shardformer](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/bert) + +**相关论文** +- [Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://arxiv.org/abs/2104.04473) +- [GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism](https://arxiv.org/abs/1811.06965) +- [FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning](https://arxiv.org/abs/2307.08691) +- [Sequence Parallelism: Long Sequence Training from System Perspective](https://arxiv.org/abs/2105.13120) + + +## 简介 + +在训练LLaMa-2 70B或OPT 175B等大型Transformer模型时,为了满足GPU内存的限制,将大型模型划分为更小的分片的模型并行方法(包括张量并行以及流水线并行)是必不可少的。然而,对于不熟悉分布式训练的用户来说,手动剪切模型并重写其前向/反向逻辑可能很困难。与此同时,Huggingface transformers开源库正在逐渐成为用户模型来源的首选,大部分主流大型模型都已在Huggingface transformers模型库中开源。 + +出于这种动机,ColossalAI团队开发了**Shardformer**,该功能可以自动为HuggingFace中主流的Transformer模型进行封装,用于张量并行以及流水线并行的训练策略。如此一来,对系统了解不多的用户也可以轻松地在transformers模型上进行并行训练:只需几行代码,用户就可以将模型转变为并行训练的状态。此外,Shardformer也包括了多种优化工具,用于在前向/后向的传递过程中实现加速和节省内存。 + + +## Shardformer的工作原理 + +通常来说,Shardformer通过以下四种“替换”进行工作: + +1. 用我们设计的分布式模块替换原始的PyTorch模块(例如`nn.Linear`、`nn.Embedding`)。 +分布式模块保持与原始模块相同的属性,但分布式模块会用新的参数替换原始模块的参数。新的前向函数将取代原来的前向函数,用于执行分布式计算,例如在张量并行下执行线性层的split/gather操作。每个分布式模块都应当实现其`from_native_module`静态方法,以将PyTorch模块转换为其相应的分布式模块。 + +2. 将原始Huggingface Transformers中间层的属性为适用于并行训练的属性。例如,当使用并行度为2的张量并行训练LlaMa-2时,`LlamaDecoderLayer` 的属性`num_heads`(每一层注意力头的数量)应替换为`model.config.num_attention_heads // 2`。 + +3. 将原来Huggingface transformers库实现的前向函数替换为我们定制的前向函数。前向函数的替换对于流水线并行性至关重要,因为流水线并行需要特殊的前向函数去在不同的流水线阶段之间传递中间的隐藏状态。此外,可以通过我们定制的前向函数将例如`flash attention`或序列并行的优化方法注入到前向的过程中。 + +4. 将完整的模型参数和优化器状态替换为只由当前设备控制的部分模型参数和优化器状态。通过执行`ModelSharder.shard`方法,当前设备仅会保留它应该处理的那部分模型参数。具体来说,这部分参数可以是使用张量并行时分配到当前机器的参数分片,或者使用流水线并行时当前流水线阶段的模型参数,或者兼而有之。除此之外的所有其他参数都被释放,用于节省内存的空间。 +如此一来,优化器只会计算保留的部分参数对应的状态,从而进一步节省内存的使用。 + +所有这些替换都是通过手动编写的策略和前向函数来实现的。如果您想更深入地研究Shardformer的设计方案,或者定制您自己的Shardformer策略,请参考[Shardformer 开发者文档](https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/shardformer/README.md)和[流水并行设计方案](https://github.com/hpcaitech/ColossalAI/discussions/4050)以获得更多细节。 + +## 用法 + +### Shardformer的参数配置 + +Shardformer的配置由类`ShardConfig`的参数控制: + +{{ autodoc:colossalai.shardformer.ShardConfig }} + +如果您想启用 Apex Fused Layernorm,请安装 `apex`。如果您想启用 flash attention,请安装 `flash_attn`。此外,xFormers 的 `cutlass_op` 可以作为Flash Attention的补充优化方式。 + +### 启动Shardformer + +#### 1. 通过Booster启动Shardformer (推荐) + +通过用`HybridParallelPlugin`初始化的`Booster`来启动`Shardformer`是最推荐的用法。其主要原因是如果不调用`Booster`的`execute_pipeline`方法,流水线并行就无法正常工作。此外,`HybridParallelPlugin`提供了将`Shardformer`的功能与其他功能(例如混合精度训练或Zero)相结合的能力。 + +更多关于这一用法的细节可以参考 [Booster API 文档](../basics/booster_api.md)以及[Booster 插件文档](../basics/booster_plugins.md)。[这里](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/bert)是一个通过`HybridParallelPlugin`启动`Shardformer`的示例。 + + +#### 2. 通过Shardformer API启动Shardformer (不推荐) + +您还可以通过手动调用Shardformer API的方式启动Shardformer。然而我们并不推荐这种用法,因为流水线并行在没有`Booster`的情况下无法正常运行。 + +[这里](https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/shardformer/examples/convergence_benchmark.py) +是一个通过调用Shardformer的API启动`Shardformer`的示例。 + + +### 注意事项 + +1. 当启用流水线并行时,请不要用常规方式(`model(input)`、`loss.backward()`)进行前向/后向传递,这样会导致未知的错误。这种情形下请通过调用`booster.execute_pipeline`方法来进行前向/后向传递。 + +2. 当使用Shardformer处理`GPT2ForSequenceClassification`、`ViTForImageClassification`等分类模型时,请确保labels的总数为张量并行度的整数倍,否则Shardformer无法正确地处理classifier层。一个简单的修复方法就是在transformers的config中添加虚拟的标签。这一bug将在 Shardformer的未来版本中修复。 + +3. 训练ChatGLM-2 6B的情况有点特殊:由于Huggingface Transformers 目前尚未正式支持ChatGLM。在使用Shardformer训练ChatGLM-2时,请通过以下方式导入config/model的类: + ```python + from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig + from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration, ChatGLMModel + ``` + 并且使用这些导入的类初始化模型。 + +## 支持信息 + +Shardformer目前支持的Huggingface Transformer模型: +- LlaMa-1/LlaMa-2 +- GPT2 +- BERT +- OPT +- BLOOM +- T5 +- ViT +- ChatGLM-2 6B +- Whisper + +Shardformer目前支持的优化工具: +- Flash Attention 2 +- JIT Fused Operator +- xFormers +- Fused Layer Normalization +- Sequence Parallel +- Sequence Overlap + +我们计划在不久后为Shardformer支持的模型: +- SAM +- Blip2 +- RoBERTa +- ALBERT +- ERNIE +- GPT Neo +- GPT-J +- BEiT +- SwinTransformer V1/V2 +- qwen + +随着未来更多模型和优化工具的出现,这些列表将会变得越来越长。如果您对我们应该支持的模型/优化工具有任何建议,欢迎在项目的[Issues](https://github.com/hpcaitech/ColossalAI/issues)板块参与讨论。 + +更多关于不同优化工具和模型之间兼容性的细节,请参考[Shardformer开发者文档](https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/shardformer/README.md)中的Roadmap一节。 + +