[autoparallel] added binary elementwise node handler (#1758)

* [autoparallel] added binary elementwise node handler

* polish code
This commit is contained in:
Frank Lee
2022-10-25 14:32:01 +08:00
committed by GitHub
parent d2fc067231
commit f9a613d660
8 changed files with 395 additions and 8 deletions

View File

@@ -0,0 +1,173 @@
import torch
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler import BinaryElementwiseHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.testing import parameterize
@parameterize('op', [torch.add])
@parameterize('other_dim', [1, 2])
def test_binary_elementwise_handler_with_tensor(op, other_dim):
class BinaryElementwiseOpModel(nn.Module):
def __init__(self, op):
super().__init__()
self.op = op
def forward(self, x1, x2):
out = self.op(x1, x2)
return out
model = BinaryElementwiseOpModel(op)
tracer = ColoTracer()
meta_args = {'x1': torch.rand(4, 4).to('meta'), 'x2': torch.rand([4] * other_dim).to('meta')}
graph = tracer.trace(model, meta_args=meta_args)
print(graph)
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
op_node = list(graph.nodes)[2]
strategies_vector = StrategiesVector(op_node)
# build handler
handler = BinaryElementwiseHandler(node=op_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.logical_shape is not None
assert op_data.data is not None
assert mapping['input'].name == "x1"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 4])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 4])
assert mapping['other'].name == "x2"
assert mapping['other'].data.is_meta
assert mapping['other'].data.shape == torch.Size([4] * other_dim)
assert mapping['other'].type == OperationDataType.ARG
assert mapping['other'].logical_shape == torch.Size([4, 4])
assert mapping['output'].name == str(op_node)
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 4])
assert mapping['output'].type == OperationDataType.OUTPUT
assert mapping['output'].logical_shape == torch.Size([4, 4])
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
# one strategy will be converted to different physical sharding spec
assert len(strategy_name_list) == 9
# check if the sharding strategy is correct
assert '[S0, S1] = [S0, S1] <binary-elementwise-op> [S0, S1]' in strategy_name_list
assert '[S1, S0] = [S1, S0] <binary-elementwise-op> [S1, S0]' in strategy_name_list
assert '[S01, R] = [S01, R] <binary-elementwise-op> [S01, R]' in strategy_name_list
assert '[R, S01] = [R, S01] <binary-elementwise-op> [R, S01]' in strategy_name_list
assert '[S0, R] = [S0, R] <binary-elementwise-op> [S0, R]' in strategy_name_list
assert '[R, S0] = [R, S0] <binary-elementwise-op> [R, S0]' in strategy_name_list
assert '[S1, R] = [S1, R] <binary-elementwise-op> [S1, R]' in strategy_name_list
assert '[R, S1] = [R, S1] <binary-elementwise-op> [R, S1]' in strategy_name_list
assert '[R, R] = [R, R] <binary-elementwise-op> [R, R]' in strategy_name_list
for strategy in strategies_vector:
input_sharding_spec = strategy.get_sharding_spec_by_name('x1')
other_sharding_spec = strategy.get_sharding_spec_by_name('x2')
output_sharding_spec = strategy.get_sharding_spec_by_name(str(op_node))
# make sure the sharding spec is the same for input and output
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence
# since the dim of the other can change, we make sure at least its last dim sharding is the same
if len(other_sharding_spec.sharding_sequence) == 2:
assert input_sharding_spec.sharding_sequence == other_sharding_spec.sharding_sequence
elif len(other_sharding_spec.sharding_sequence) == 1:
assert input_sharding_spec.sharding_sequence[-1] == other_sharding_spec.sharding_sequence[-1]
@parameterize('op', [torch.add])
@parameterize('other', [1, 2])
def test_binary_elementwise_handler_with_int(op, other):
class BinaryElementwiseOpModel(nn.Module):
def __init__(self, op, const):
super().__init__()
self.op = op
self.const = const
def forward(self, x1):
out = self.op(x1, self.const)
return out
model = BinaryElementwiseOpModel(op, other)
tracer = ColoTracer()
meta_args = {'x1': torch.rand(4, 4).to('meta')}
graph = tracer.trace(model, meta_args=meta_args)
print(graph)
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
op_node = list(graph.nodes)[1]
strategies_vector = StrategiesVector(op_node)
# build handler
handler = BinaryElementwiseHandler(node=op_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
assert mapping['input'].name == "x1"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 4])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 4])
assert mapping['output'].name == str(op_node)
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 4])
assert mapping['output'].type == OperationDataType.OUTPUT
assert mapping['output'].logical_shape == torch.Size([4, 4])
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
# one strategy will be converted to different physical sharding spec
assert len(strategy_name_list) == 9
# check if the sharding strategy is correct
assert '[S0, S1] = [S0, S1] <binary-elementwise-op> [S0, S1]' in strategy_name_list
assert '[S1, S0] = [S1, S0] <binary-elementwise-op> [S1, S0]' in strategy_name_list
assert '[S01, R] = [S01, R] <binary-elementwise-op> [S01, R]' in strategy_name_list
assert '[R, S01] = [R, S01] <binary-elementwise-op> [R, S01]' in strategy_name_list
assert '[S0, R] = [S0, R] <binary-elementwise-op> [S0, R]' in strategy_name_list
assert '[R, S0] = [R, S0] <binary-elementwise-op> [R, S0]' in strategy_name_list
assert '[S1, R] = [S1, R] <binary-elementwise-op> [S1, R]' in strategy_name_list
assert '[R, S1] = [R, S1] <binary-elementwise-op> [R, S1]' in strategy_name_list
assert '[R, R] = [R, R] <binary-elementwise-op> [R, R]' in strategy_name_list
for strategy in strategies_vector:
input_sharding_spec = strategy.get_sharding_spec_by_name('x1')
output_sharding_spec = strategy.get_sharding_spec_by_name(str(op_node))
# make sure the sharding spec is the same for input and output
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence
if __name__ == '__main__':
test_binary_elementwise_handler_with_tensor()
test_binary_elementwise_handler_with_int()