mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-28 21:17:08 +00:00
[inference] update examples and engine (#5073)
* update examples and engine * fix choices * update example
This commit is contained in:
68
examples/inference/build_smoothquant_weight.py
Normal file
68
examples/inference/build_smoothquant_weight.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from transformers import LlamaTokenizer
|
||||
|
||||
from colossalai.inference.quant.smoothquant.models.llama import SmoothLlamaForCausalLM
|
||||
|
||||
|
||||
def build_model_and_tokenizer(model_name):
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_name, model_max_length=512)
|
||||
kwargs = {"torch_dtype": torch.float16, "device_map": "sequential"}
|
||||
model = SmoothLlamaForCausalLM.from_pretrained(model_name, **kwargs)
|
||||
model = model.to(torch.float32)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, help="model name")
|
||||
parser.add_argument(
|
||||
"--output-path",
|
||||
type=str,
|
||||
help="where to save the checkpoint",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-path",
|
||||
type=str,
|
||||
help="location of the calibration dataset",
|
||||
)
|
||||
parser.add_argument("--num-samples", type=int, default=10)
|
||||
parser.add_argument("--seq-len", type=int, default=512)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = parse_args()
|
||||
model_path = args.model_name
|
||||
dataset_path = args.dataset_path
|
||||
output_path = args.output_path
|
||||
num_samples = args.num_samples
|
||||
seq_len = args.seq_len
|
||||
|
||||
model, tokenizer = build_model_and_tokenizer(model_path)
|
||||
if not os.path.exists(dataset_path):
|
||||
raise FileNotFoundError(f"Cannot find the dataset at {args.dataset_path}")
|
||||
dataset = load_dataset("json", data_files=dataset_path, split="train")
|
||||
|
||||
model.quantized(tokenizer, dataset, num_samples=num_samples, seq_len=seq_len)
|
||||
model = model.cuda()
|
||||
|
||||
model.save_quantized(output_path, model_basename="llama-7b")
|
||||
|
||||
model = SmoothLlamaForCausalLM.from_quantized(output_path, model_basename="llama-7b")
|
||||
model = model.cuda()
|
||||
|
||||
generate_kwargs = dict(max_new_tokens=16, do_sample=False, use_cache=True)
|
||||
input_tokens = tokenizer(["today is "], return_tensors="pt").to("cuda")
|
||||
out = model.generate(**input_tokens, **generate_kwargs)
|
||||
text = tokenizer.batch_decode(out)
|
||||
print("out is:", text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user