mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 09:38:05 +00:00
This commit is contained in:
@@ -20,8 +20,8 @@ from imwatermark import WatermarkEncoder
|
||||
|
||||
|
||||
from scripts.txt2img import put_watermark
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||
from utils import replace_module, getModelSize
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ def load_model_from_config(config, ckpt, verbose=False):
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
model = LatentDiffusion(**config.model.get("params", dict()))
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0 and verbose:
|
||||
print("missing keys:")
|
||||
|
@@ -4,7 +4,7 @@ from PIL import Image
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import torch
|
||||
from ldm.models.diffusion.ddpm import LatentgDiffusion
|
||||
from main import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
|
||||
@@ -57,7 +57,7 @@ if __name__ == "__main__":
|
||||
print(f"Found {len(masks)} inputs.")
|
||||
|
||||
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
|
||||
model = LatentDiffusion(**config.model.get("params", dict()))
|
||||
model = instantiate_from_config(config.model)
|
||||
model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"],
|
||||
strict=False)
|
||||
|
||||
|
@@ -13,10 +13,9 @@ import scann
|
||||
import time
|
||||
from multiprocessing import cpu_count
|
||||
|
||||
from ldm.util import parallel_data_prefetch
|
||||
from ldm.util import instantiate_from_config, parallel_data_prefetch
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, FrozenCLIPTextEmbedder
|
||||
|
||||
DATABASES = [
|
||||
@@ -45,7 +44,7 @@ def load_model_from_config(config, ckpt, verbose=False):
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
model = LatentDiffusion(**config.model.get("params", dict()))
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0 and verbose:
|
||||
print("missing keys:")
|
||||
|
@@ -8,6 +8,7 @@ from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
rescale = lambda x: (x + 1.) / 2.
|
||||
|
||||
@@ -217,7 +218,7 @@ def get_parser():
|
||||
|
||||
|
||||
def load_model_from_config(config, sd):
|
||||
model = LatentDiffusion(**config.get("params", dict()))
|
||||
model = instantiate_from_config(config)
|
||||
model.load_state_dict(sd,strict=False)
|
||||
model.cuda()
|
||||
model.eval()
|
||||
|
@@ -9,7 +9,7 @@ from diffusers import StableDiffusionPipeline
|
||||
import torch
|
||||
from ldm.util import instantiate_from_config
|
||||
from main import get_parser
|
||||
from ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||||
|
||||
if __name__ == "__main__":
|
||||
with torch.no_grad():
|
||||
yaml_path = "../../train_colossalai.yaml"
|
||||
@@ -17,7 +17,7 @@ if __name__ == "__main__":
|
||||
config = f.read()
|
||||
base_config = yaml.load(config, Loader=yaml.FullLoader)
|
||||
unet_config = base_config['model']['params']['unet_config']
|
||||
diffusion_model = UNetModel(**unet_config.get("params", dict())).to("cuda:0")
|
||||
diffusion_model = instantiate_from_config(unet_config).to("cuda:0")
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(
|
||||
"/data/scratch/diffuser/stable-diffusion-v1-4"
|
||||
|
@@ -16,9 +16,9 @@ from torch import autocast
|
||||
from contextlib import nullcontext
|
||||
from imwatermark import WatermarkEncoder
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
||||
from utils import replace_module, getModelSize
|
||||
|
||||
@@ -35,7 +35,7 @@ def load_model_from_config(config, ckpt, verbose=False):
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
model = LatentDiffusion(**config.model.get("params", dict()))
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0 and verbose:
|
||||
print("missing keys:")
|
||||
|
Reference in New Issue
Block a user