mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
[autoparallel] Patch meta information of torch.tanh()
and torch.nn.Dropout
(#2773)
* [autoparallel] tanh meta information * [autoparallel] remove redundant code * [autoparallel] patch meta information of torch.nn.Dropout
This commit is contained in:
@@ -17,51 +17,15 @@ from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy, print_results
|
||||
|
||||
|
||||
def _ReLU_module_mem_test(rank, world_size, port):
|
||||
"""This function is for ReLU memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
Args:
|
||||
rank: device rank
|
||||
bias: indicate whether conv module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = nn.Sequential(nn.ReLU()).cuda()
|
||||
input = torch.rand(4, 128, 64, 64).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of target node in computation graph
|
||||
node_index = 1
|
||||
# total number of target node strategies
|
||||
strategy_number = 1
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_ReLU_meta_concrete_info_match():
|
||||
world_size = 4
|
||||
run_func_module = partial(_ReLU_module_mem_test, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")
|
||||
def test_sofmax_meta_info():
|
||||
meta_func = meta_register.get(torch.nn.functional.softmax)
|
||||
@parameterize('func', [
|
||||
torch.nn.functional.softmax,
|
||||
torch.nn.functional.relu,
|
||||
torch.tanh,
|
||||
torch.nn.functional.dropout,
|
||||
])
|
||||
def test_activation_meta_info(func):
|
||||
meta_func = meta_register.get(func)
|
||||
# construct meta tensors
|
||||
input_tensor = torch.rand(256, 1024, device="meta")
|
||||
output_tensor = torch.rand(256, 1024, device="meta")
|
||||
@@ -87,7 +51,7 @@ def test_sofmax_meta_info():
|
||||
# fwd
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
output_real_tensor = torch.nn.functional.softmax(input_real_tensor, dim=softmax_dim)
|
||||
output_real_tensor = func(input_real_tensor)
|
||||
fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0
|
||||
fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0
|
||||
|
||||
@@ -104,5 +68,4 @@ def test_sofmax_meta_info():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_ReLU_meta_concrete_info_match()
|
||||
test_sofmax_meta_info()
|
||||
test_activation_meta_info()
|
||||
|
Reference in New Issue
Block a user