[inference] Async dynamic batching (#4894)

* finish input and output logic

* add generate

* test forward

* 1
This commit is contained in:
Jianghai 2023-10-12 18:48:27 +08:00 committed by GitHub
parent e0757c31fb
commit fced140250
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 137 additions and 30 deletions

View File

@ -102,17 +102,21 @@ class Batch:
has_new_finish = True has_new_finish = True
return has_new_finish return has_new_finish
def filter_finished(self): def filter_finished(self)->List[Req]:
""" """
Filter finished requests from the batch, the finished ones will be removed from 'reqs'. Filter finished requests from the batch, the finished ones will be removed from 'reqs'.
""" """
# TODO: the logic of return should be defined here. # TODO: the logic of return should be defined here.
unfinished_req = [] unfinished_req = []
finished_req = []
for req in self.reqs: for req in self.reqs:
if not req.has_generate_finished: if not req.has_generate_finished:
unfinished_req.append(req) unfinished_req.append(req)
else:
finished_req.append(req)
self.reqs = unfinished_req self.reqs = unfinished_req
self.id_to_reqs = {req.request_id: req for req in self.reqs} self.id_to_reqs = {req.request_id: req for req in self.reqs}
return finished_req
def is_clear(self): def is_clear(self):
return len(self.reqs) == 0 return len(self.reqs) == 0

View File

@ -1,5 +1,6 @@
import time import time
from typing import List from typing import List
import asyncio
from .dynamic_batching.infer_batch import InferBatch from .dynamic_batching.infer_batch import InferBatch
from .dynamic_batching.io_struct import Batch, Req from .dynamic_batching.io_struct import Batch, Req
@ -8,6 +9,8 @@ from .dynamic_batching.sampling_params import SamplingParams
from .dynamic_batching.stats import Stats from .dynamic_batching.stats import Stats
from .tensor_parallel import TPInferEngine from .tensor_parallel import TPInferEngine
from transformers import AutoTokenizer
_FAST_LLAMA_TOKENIZER = "hf-internal-testing/llama-tokenizer"
class DynamicBatchManager: class DynamicBatchManager:
def __init__( def __init__(
@ -54,6 +57,20 @@ class DynamicBatchManager:
self.req_queue.append(req) self.req_queue.append(req)
return return
def add_input(self, request_id, sampling_params, input_ids):
"""
Encode and Add new input to req queue. support one sequence input for now.
"""
prompt_ids = self.tokenizer.encode(input_ids)
prompt_len = len(prompt_ids)
if prompt_len > self.engine.max_input_len:
raise ValueError(
f"the input prompt token len {prompt_len} is too long > {self.engine.max_input_len}"
)
sampling_params.stop_sentences_to_token_ids(self.tokenizer)
self.add_req(prompt_ids, sampling_params, request_id)
return
def abort(self, request_id): def abort(self, request_id):
if self.running_batch is not None: if self.running_batch is not None:
for req in self.running_batch.reqs: for req in self.running_batch.reqs:
@ -66,13 +83,15 @@ class DynamicBatchManager:
req.aborted = True req.aborted = True
return return
def loop_for_fwd(self): async def loop_for_fwd(self):
""" """
The main loop for a dynamic batching process. The main loop for a dynamic batching process.
""" """
counter_count = 0 counter_count = 0
while self.running_batch is not None or self.req_queue.waiting_req_list: #self.running_batch is not None or self.req_queue.waiting_req_list
self._step() while True:
async for item in self._step():
yield item
counter_count += 1 counter_count += 1
if self.running_batch is not None: if self.running_batch is not None:
if counter_count % self.mem_usage_interval == 0: if counter_count % self.mem_usage_interval == 0:
@ -87,6 +106,26 @@ class DynamicBatchManager:
if self.running_batch is None: if self.running_batch is None:
time.sleep(0.1) # 10ms time.sleep(0.1) # 10ms
def _set_tokenizer(self, tokenizer=None, tokenizer_name: str = "", trust_remote_code: bool = False, use_fast:bool = True,):
if tokenizer is not None:
self.tokenizer = tokenizer
else:
if "llama" in tokenizer_name.lower() and use_fast == True:
print(
"For some LLaMA-based models, initializing the fast tokenizer may "
"take a long time. To eliminate the initialization time, consider "
f"using '{_FAST_LLAMA_TOKENIZER}' instead of the original "
"tokenizer. This is done automatically in Colossalai.")
tokenizer_name = _FAST_LLAMA_TOKENIZER
try:
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=use_fast,trust_remote_code=trust_remote_code)
except TypeError as e:
use_fast = False
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=use_fast,trust_remote_code=trust_remote_code)
def _step(self): def _step(self):
""" """
Logic for handling requests Logic for handling requests
@ -97,14 +136,14 @@ class DynamicBatchManager:
if new_batch is not None: if new_batch is not None:
self.stats_tool.count_prompt_tokens(new_batch) self.stats_tool.count_prompt_tokens(new_batch)
self.running_batch = new_batch self.running_batch = new_batch
self._prefill_batch(self.running_batch) yield from self._prefill_batch(self.running_batch)
self._filter_runing_batch() self._filter_runing_batch()
self.has_wait_tokens = 0 self.has_wait_tokens = 0
return return
if self.has_wait_tokens < self.max_wait_tokens: if self.has_wait_tokens < self.max_wait_tokens:
self.stats_tool.count_output_tokens(self.running_batch) self.stats_tool.count_output_tokens(self.running_batch)
self._decode_batch(self.running_batch) yield from self._decode_batch(self.running_batch)
self._filter_runing_batch() self._filter_runing_batch()
self.has_wait_tokens += 1 self.has_wait_tokens += 1
return return
@ -112,14 +151,15 @@ class DynamicBatchManager:
new_mini_batch = self.req_queue.generate_new_batch(self.running_batch) new_mini_batch = self.req_queue.generate_new_batch(self.running_batch)
if new_mini_batch is not None: if new_mini_batch is not None:
self.stats_tool.count_prompt_tokens(new_mini_batch) self.stats_tool.count_prompt_tokens(new_mini_batch)
self._prefill_batch(new_mini_batch) yield from self._prefill_batch(new_mini_batch)
if not new_mini_batch.is_clear(): if not new_mini_batch.is_clear():
self._merge_batch(self.running_batch, new_mini_batch) self._merge_batch(self.running_batch, new_mini_batch)
self.running_batch.merge(new_mini_batch) self.running_batch.merge(new_mini_batch)
self.has_wait_tokens = 0 self.has_wait_tokens = 0
else: else:
self.stats_tool.count_output_tokens(self.running_batch) self.stats_tool.count_output_tokens(self.running_batch)
self._decode_batch(self.running_batch) yield from self._decode_batch(self.running_batch)
self._filter_runing_batch() self._filter_runing_batch()
self.has_wait_tokens += 1 self.has_wait_tokens += 1
@ -158,7 +198,8 @@ class DynamicBatchManager:
req_to_out_token_id = ans req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id) self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id) has_new_finished_req = batch.mark_finished_req(self.eos_id)
self._handle_finish_req(batch, has_new_finished_req) yield from self._handle_finish_req(batch, has_new_finished_req)
# delete finished reqs # delete finished reqs
def _decode_batch(self, batch: Batch): def _decode_batch(self, batch: Batch):
@ -169,7 +210,7 @@ class DynamicBatchManager:
req_to_out_token_id = ans req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id) self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id) has_new_finished_req = batch.mark_finished_req(self.eos_id)
self._handle_finish_req(batch, has_new_finished_req) yield from self._handle_finish_req(batch, has_new_finished_req)
def _filter_batch(self, batch: Batch): def _filter_batch(self, batch: Batch):
batch_id = batch.batch_id batch_id = batch.batch_id
@ -201,11 +242,13 @@ class DynamicBatchManager:
def _handle_finish_req(self, batch: Batch, has_new_finished_req): def _handle_finish_req(self, batch: Batch, has_new_finished_req):
if has_new_finished_req: if has_new_finished_req:
batch.filter_finished() finished_reqs=batch.filter_finished()
if batch.is_clear(): if batch.is_clear():
self._remove_batch(batch) self._remove_batch(batch)
else: else:
self._filter_batch(batch) self._filter_batch(batch)
yield from self._output_process(finished_reqs)
def _filter_runing_batch(self): def _filter_runing_batch(self):
if self.running_batch is not None and self.running_batch.is_clear(): if self.running_batch is not None and self.running_batch.is_clear():
@ -218,13 +261,27 @@ class DynamicBatchManager:
req.output_metadata_list.append(new_gen_metadata) req.output_metadata_list.append(new_gen_metadata)
return return
async def _output_process(self, finished_reqs: List[Req]):
"""
Process the output of a batch.
"""
for req in finished_reqs:
output = self.tokenizer.decode(req.output_ids)
yield output, req.request_id, req.output_metadata_list
def clean_up(self): def clean_up(self):
# this logic should be implemented in the future. # this logic should be implemented in the future.
pass pass
async def generate(self,request_id,prompt_id,sampling_params):
"""
Generate the output of a request.
"""
self.add_input(request_id,prompt_id,sampling_params)
def start_dynamic_batching(args, tp_engine, waiting_req_list): def start_dynamic_batching(args, tp_engine, waiting_req_list):
# try: try:
batch_manager = DynamicBatchManager( batch_manager = DynamicBatchManager(
tp_engine=tp_engine, tp_engine=tp_engine,
max_total_token_num=args.max_total_token_num, max_total_token_num=args.max_total_token_num,
@ -235,9 +292,16 @@ def start_dynamic_batching(args, tp_engine, waiting_req_list):
waiting_req_list=waiting_req_list, waiting_req_list=waiting_req_list,
) )
# except Exception: except Exception:
# batch_manager.clean_up() batch_manager.clean_up()
# raise raise
batch_manager.loop_for_fwd() batch_manager._set_tokenizer(tokenizer_name = tp_engine.model.__class__.__name__)
return prod_task = asyncio.create_task(batch_manager.add_input(4,sampling_params=SamplingParams(),input_ids="hello world"))
asyncio.run(prod_task)
for item in batch_manager.loop_for_fwd():
print(item)
return batch_manager

View File

@ -0,0 +1,33 @@
import asyncio
shared_list = []
async def producer():
for i in range(5):
await asyncio.sleep(1) # 模拟异步获取数据的操作
shared_list.append(i)
print(f"Produced {i}")
async def consumer():
last_index = 0
while True:
await asyncio.sleep(0.5) # 为了不使循环过于紧凑,增加了小的延迟
if last_index < len(shared_list):
item = shared_list[last_index]
print(f"Consumed {item}")
yield item
last_index += 1
async def main():
# 创建生产者和消费者任务
prod_task = asyncio.create_task(producer())
# 等待生产者任务完成
await prod_task
async for data in consumer():
print(data)
# 为了示例的目的,我们只等待一段时间,然后停止消费者
await asyncio.sleep(5)
asyncio.run(main())

View File

@ -50,7 +50,13 @@ def run():
shard_config = ShardConfig(enable_tensor_parallelism=True if TP_SIZE > 1 else False, inference_only=True) shard_config = ShardConfig(enable_tensor_parallelism=True if TP_SIZE > 1 else False, inference_only=True)
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN) infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
start_dynamic_batching(arg, tp_engine=infer_engine, waiting_req_list=waiting_list) manager = start_dynamic_batching(arg, tp_engine=infer_engine, waiting_req_list=waiting_list)
manager._set_tokenizer(tokenizer_name = model.__class__.__name__)
result_generator = manager.loop_for_fwd()
for result in result_generator:
print(result)
def check_dynamic_forward(rank, world_size, port): def check_dynamic_forward(rank, world_size, port):