This commit is contained in:
wangbluo 2025-05-08 18:03:53 +08:00
parent 4eced5cf8a
commit fe94d73f6b

View File

@ -3,10 +3,6 @@ from typing import List, Optional, Tuple, Union
import torch
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_attn_mask_utils import (
_prepare_4d_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
@ -63,11 +59,12 @@ class BertPipelineForwards:
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
# TODO(jianghai): add explaination of the output here.
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*):
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
@ -133,43 +130,13 @@ class BertPipelineForwards:
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device)
use_sdpa_attention_masks = (
self.attn_implementation == "sdpa"
and self.position_embedding_type == "absolute"
and head_mask is None
and not output_attentions
)
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
# Expand the attention mask
if use_sdpa_attention_masks and attention_mask.dim() == 2:
# Expand the attention mask for SDPA.
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
if self.config.is_decoder:
extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
embedding_output,
past_key_values_length,
)
else:
extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
attention_mask, embedding_output.dtype, tgt_len=seq_length
)
else:
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
attention_mask = extended_attention_mask
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
@ -177,13 +144,6 @@ class BertPipelineForwards:
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
if use_sdpa_attention_masks and encoder_attention_mask.dim() == 2:
# Expand the attention mask for SDPA.
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length
)
else:
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
@ -204,8 +164,7 @@ class BertPipelineForwards:
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
print("hidden_states:", hidden_states.shape)
print("bert_model_forward hidden_states:", hidden_states.shape)
# inherit from bert_layer,this should be changed when we add the feature to record hidden_states
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
@ -252,25 +211,30 @@ class BertPipelineForwards:
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.encoder.gradient_checkpointing and self.encoder.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask=extended_attention_mask,
head_mask=layer_head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=layer_head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
@ -1176,7 +1140,7 @@ def bert_sequence_parallel_forward_fn(shard_config: ShardConfig):
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
print("embedding_output:", embedding_output.shape)
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
embedding_output = split_forward_gather_backward(
@ -1185,7 +1149,6 @@ def bert_sequence_parallel_forward_fn(shard_config: ShardConfig):
process_group=shard_config.tensor_parallel_process_group,
fp8_communication=shard_config.fp8_communication,
)
print("after split_forward_gather_backward embedding_output:", embedding_output.shape)
if encoder_hidden_states is not None:
encoder_hidden_states = split_forward_gather_backward(
encoder_hidden_states,