mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 04:24:47 +00:00
[autoparallel] support addmm in tracer and solver (#1961)
* [fx] patch addmm * [autoparallel] support addmm in tracer and solver
This commit is contained in:
@@ -0,0 +1,156 @@
|
||||
from faulthandler import disable
|
||||
from functools import partial
|
||||
from xml.dom import WrongDocumentErr
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from typing_extensions import Self
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import ADDMMFunctionHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||
|
||||
|
||||
class AddmmModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, input, m1, m2):
|
||||
x = torch.addmm(input, m1, m2)
|
||||
return x
|
||||
|
||||
|
||||
def check_linear_function_handler(rank, input_shape, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = AddmmModel().cuda()
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
input = torch.rand(input_shape).cuda()
|
||||
m1 = torch.rand(4, 8).cuda()
|
||||
m2 = torch.rand(8, 16).cuda()
|
||||
# the index of addmm node in computation graph
|
||||
node_index = 3
|
||||
# strategy number of linear node
|
||||
strategy_number = 10
|
||||
# construct input args
|
||||
input_args = [input, m1, m2]
|
||||
# construct meta arg names
|
||||
meta_arg_names = ['input', 'm1', 'm2']
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=input_args,
|
||||
meta_arg_names=meta_arg_names)
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(input_shape).to('meta'),
|
||||
'm1': torch.rand(4, 8).to('meta'),
|
||||
'm2': torch.rand(8, 16).to('meta'),
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
# [input_1, m1, m2, addmm, output]
|
||||
node_list = list(graph.nodes)
|
||||
addmm_node = node_list[3]
|
||||
strategies_vector = StrategiesVector(addmm_node)
|
||||
|
||||
# build handler
|
||||
handler = ADDMMFunctionHandler(node=addmm_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
assert mapping['input'].name == "m1"
|
||||
assert mapping['input'].data.shape == torch.Size([4, 8])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 8])
|
||||
|
||||
assert mapping['other'].name == "m2"
|
||||
assert mapping['other'].data.shape == torch.Size([8, 16])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([8, 16])
|
||||
|
||||
assert mapping['bias'].name == "input_1"
|
||||
assert mapping['bias'].data.shape == torch.Size(input_shape)
|
||||
assert mapping['bias'].type == OperationDataType.ARG
|
||||
assert mapping['bias'].logical_shape == torch.Size([4, 16])
|
||||
|
||||
assert mapping['output'].name == "addmm"
|
||||
assert mapping['output'].data.shape == torch.Size([4, 16])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
# one strategy will be converted to different physical sharding spec
|
||||
assert len(strategy_name_list) > 8
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0' in strategy_name_list
|
||||
|
||||
# SR = SS x SR
|
||||
assert 'S0R = S0S1 x S1R' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R' in strategy_name_list
|
||||
|
||||
# RS = RS x SS
|
||||
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
||||
assert 'RS1 = RS0 x S0S1' in strategy_name_list
|
||||
|
||||
# RR = RS x SR
|
||||
assert 'RR = RS0 x S0R' in strategy_name_list
|
||||
assert 'RR = RS1 x S1R' in strategy_name_list
|
||||
|
||||
# RS= RR x RS
|
||||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('m1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('m2')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('addmm')
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
|
||||
assert weight_sharding_spec.sharding_sequence[0] == input_sharding_spec.sharding_sequence[1]
|
||||
assert weight_sharding_spec.sharding_sequence[1] == output_sharding_spec.sharding_sequence[1]
|
||||
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
@parameterize('input_shape', [(16,), (4, 16)])
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_addmm_handler(input_shape):
|
||||
world_size = 4
|
||||
run_func_function = partial(check_linear_function_handler,
|
||||
input_shape=input_shape,
|
||||
world_size=world_size,
|
||||
port=free_port())
|
||||
mp.spawn(run_func_function, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_addmm_handler()
|
Reference in New Issue
Block a user