[autoparallel]integrate auto parallel feature with new tracer (#3408)

* [autoparallel] integrate new analyzer in module level

* unify the profiling method

* polish

* fix no codegen bug

* fix pass bug

* fix liveness test

* polish
This commit is contained in:
YuliangLiu0306
2023-04-04 17:40:45 +08:00
committed by GitHub
parent 573af84184
commit ffcdbf0f65
46 changed files with 396 additions and 470 deletions

View File

@@ -1,3 +1,3 @@
from .meta_registry import *
from .metainfo import *
from .registry import meta_register
from .shard_metainfo import *

View File

@@ -2,9 +2,9 @@ from typing import Callable, List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import ewise_flop_counter as elementwise_flop_counter
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import elementwise_flop_counter
from ..registry import meta_register

View File

@@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..constants import BCAST_FUNC_OP, NO_SAVE_ACTIVATION
from ..registry import meta_register
@@ -17,7 +17,7 @@ def binary_elementwise_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, Train
"""Meta information generator for binary elementwise operations
NOTE: Some of the binary elementwise operations will discard the input activation after computation, as they
don't need those tensors for back propagation, for example, if there are two tensors being sent for `torch.add`,
they will be discarded right after add operation is done. We create a simple API in `MetaInfo` class to identify
they will be discarded right after add operation is done. We create a simple API in `ShardMetaInfo` class to identify
this behavior, it is critical for better memory estimation.
Returns:

View File

@@ -2,6 +2,8 @@ from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
@@ -10,8 +12,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
@@ -110,18 +110,18 @@ def convnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# calculate memory cost
# TODO: use profiler to check conv temp memory
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(
activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]) if has_bias else activation_size(weight_tensor),
temp=0,
buffer=0)
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor])
if has_bias else compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(
activation=activation_size([input_tensor, weight_tensor, bias_tensor])
if has_bias else activation_size([input_tensor, weight_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]) if has_bias else activation_size(weight_tensor),
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor])
if has_bias else compute_size_in_bytes([input_tensor, weight_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor])
if has_bias else compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,

View File

@@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
@@ -34,11 +34,11 @@ def embedding_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem
# NOTE: during the backward phase of torch.nn.Embedding, it seems when the input is large enough, it will
# have a temp memory which is kind of weird and we don't know the reason yet, so currently we just assume
# that there will be no temp memory, as the temp memory is significantly smaller than the gradient memory
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=0,
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(activation=activation_size([weight_tensor]), parameter=0, temp=0, buffer=0)
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([weight_tensor]), parameter=0, temp=0, buffer=0)
total_memory_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation)

View File

@@ -3,6 +3,8 @@ from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
@@ -11,8 +13,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
@@ -112,14 +112,14 @@ def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor and bias_tensor
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor, weight_tensor and bias_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor, bias_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=0)
@@ -148,14 +148,14 @@ def linear_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# NOTE: Linear don't have buffer and temp in forward and backward phase
# the forward activation cost is the size of output_tensor, parameter cost is the size of weight_tensor
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
parameter=activation_size(weight_tensor),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]),
parameter=compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)
# the backward activation cost is the size of input_tensor and weight_tensor, parameter cost is 0
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor]),
parameter=activation_size(weight_tensor),
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor]),
parameter=compute_size_in_bytes(weight_tensor),
temp=0,
buffer=0)
@@ -210,48 +210,48 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
# Check dimension
if all(len(tensor.shape) == 1 for tensor in input_tensors):
# Dot
fwd_compute_cost = flop_mapping[torch.ops.aten.dot.default](input_tensors, output_tensors)
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](input_tensors, output_tensors)
bwd_compute_cost = flop_mapping[torch.ops.aten.mul.Tensor](input_tensors[0], output_tensors) * 2
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors), parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors), parameter=0, temp=0, buffer=0)
elif len(input_tensors[0].shape) >= 2 and len(input_tensors[1].shape) == 1:
# gemv case 1: matrix-vector multiplication
# &
# batched gemv case 1: batched matrix-vector multiplication
fwd_compute_cost = flop_mapping[torch.ops.aten.mv.default](
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[0].reshape(-1, input_tensors[0].shape[-1]), input_tensors[1]], output_tensors)
# combine the dimensions of output
bwd_compute_cost = flop_mapping[torch.ops.aten.mul.Tensor](
[output_tensors[0].reshape(-1), input_tensors[1]],
output_tensors) + \
flop_mapping[torch.ops.aten.mv.default](
flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[0].reshape(-1, input_tensors[0].shape[-1]).transpose(0, 1), output_tensors[0].reshape(-1)],
output_tensors)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors), parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors), parameter=0, temp=0, buffer=0)
elif len(input_tensors[0].shape) == 1 and len(input_tensors[1].shape) == 2:
# gemv case 2: vector-matrix multiplication
fwd_compute_cost = flop_mapping[torch.ops.aten.mv.default](input_tensors, output_tensors)
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](input_tensors, output_tensors)
bwd_compute_cost = flop_mapping[torch.ops.aten.mul.Tensor]([output_tensors[0], input_tensors[0]], output_tensors) + \
flop_mapping[torch.ops.aten.mv.default]([input_tensors[1], output_tensors[0]], output_tensors)
flop_mapping[torch.ops.aten.matmul.default]([input_tensors[1], output_tensors[0]], output_tensors)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors),
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors),
parameter=0,
temp=activation_size(input_tensors[1]),
temp=compute_size_in_bytes(input_tensors[1]),
buffer=0)
elif len(input_tensors[0].shape) == 1 and len(input_tensors[1].shape) >= 3:
# batched gemv case 2: vector-batched matrix multiplication
fwd_compute_cost = flop_mapping[torch.ops.aten.mv.default](
fwd_compute_cost = flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[1].transpose(-2, -1).reshape(-1, input_tensors[1].shape[-2]), input_tensors[0]],
[output_tensors[0].reshape(-1)])
@@ -260,15 +260,15 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[output_tensors[0].reshape(-1), input_tensors[0]],
output_tensors
) + \
flop_mapping[torch.ops.aten.mv.default](
flop_mapping[torch.ops.aten.matmul.default](
[input_tensors[1].transpose(-2, -1).reshape(-1, input_tensors[1].shape[-2]).transpose(0, 1), output_tensors[0].reshape(-1)],
output_tensors
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors + [input_tensors[1]]))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors[0]),
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors + [input_tensors[1]]))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors[0]),
parameter=0,
temp=activation_size(input_tensors[1]),
temp=compute_size_in_bytes(input_tensors[1]),
buffer=0)
elif len(input_tensors[0].shape) >= 2 and len(input_tensors[1].shape) == 2:
@@ -287,8 +287,8 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[input_tensors[0].reshape(-1, input_tensors[0].shape[-1])]
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors), parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors), parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors), parameter=0, temp=0, buffer=0)
elif len(input_tensors[0].shape) == 2 and len(input_tensors[1].shape) >= 3:
# batched gemm case 2: matrix-batched matrix multiplication
@@ -306,11 +306,12 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[input_tensors[1].transpose(-2, -1).reshape(-1, input_tensors[1].shape[-2])]
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors) + activation_size(input_tensors[1]),
temp=activation_size(output_tensors))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors[0]),
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors) +
compute_size_in_bytes(input_tensors[1]),
temp=compute_size_in_bytes(output_tensors))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors[0]),
parameter=0,
temp=activation_size(input_tensors[1]) + activation_size(output_tensors))
temp=compute_size_in_bytes(input_tensors[1]) + compute_size_in_bytes(output_tensors))
elif all(len(tensor.shape) >= 3 for tensor in input_tensors):
# Batched matrix-batched matrix multiplication
@@ -351,8 +352,8 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
[input_tensors[0].reshape(-1, input_dim_00, input_dim_01)]
)
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensors))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors))
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(output_tensors))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors))
else:
# Case 2: batch dimensions are different
@@ -381,10 +382,10 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L
)
fwd_mem_cost = MemoryCost(
activation=activation_size([output_tensors[0], extended_input_0, extended_input_1]))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensors) -
activation_size([extended_input_0, extended_input_1]),
temp=activation_size([extended_input_0, extended_input_1]))
activation=compute_size_in_bytes([output_tensors[0], extended_input_0, extended_input_1]))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensors) -
compute_size_in_bytes([extended_input_0, extended_input_1]),
temp=compute_size_in_bytes([extended_input_0, extended_input_1]))
# compute cost
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)

View File

@@ -4,8 +4,6 @@ from typing import List, Tuple
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register

View File

@@ -2,6 +2,8 @@ from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
@@ -10,8 +12,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
@@ -77,17 +77,18 @@ def batchnormnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleIt
# calculate memory cost
# the fwd activation cost is output plus saved mean and saved inv std
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, mean_tensor, var_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
[input_tensor, output_tensor, mean_tensor, var_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=activation_size([mean_tensor, var_tensor]))
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
# the bwd memory cost is quite tricky here, BatchNorm will remove saved mean
# and saved inv std during backward phase
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=activation_size([mean_tensor, var_tensor]),
buffer=activation_size([mean_tensor, var_tensor]))
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([mean_tensor, var_tensor]),
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
@@ -131,15 +132,16 @@ def layernorm_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem
# memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, weight_tensor, bias_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
[input_tensor, output_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=0,
buffer=activation_size([running_mean, running_var]))
buffer=compute_size_in_bytes([running_mean, running_var]))
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor, bias_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=activation_size([running_mean, running_var]),
buffer=activation_size([running_mean, running_var]))
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]),
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
temp=compute_size_in_bytes([running_mean, running_var]),
buffer=compute_size_in_bytes([running_mean, running_var]))
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,

View File

@@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
@@ -52,8 +52,8 @@ def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
fwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(output_tensor))
bwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(input_tensor))
fwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=compute_size_in_bytes(output_tensor))
bwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=compute_size_in_bytes(input_tensor))
# total cost
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation)
@@ -114,11 +114,11 @@ def maxpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
# calculate memory cost
# NOTE: the index matrix will be discarded in backward phase
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_mem_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, index_matrix]))
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor, index_matrix]))
# temp memory for backward is the index matrix to be discarded
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensor) - activation_size(index_matrix),
temp=activation_size(index_matrix))
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(input_tensor) - compute_size_in_bytes(index_matrix),
temp=compute_size_in_bytes(index_matrix))
# total cost
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation, temp=bwd_mem_cost.temp)

View File

@@ -2,9 +2,9 @@ from typing import Callable, List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
@@ -35,11 +35,11 @@ def tensor_related_metainfo(bwd_mem_out_factor: float = 1, bwd_mem_tmp_factor: f
# memory costs
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_mem_cost = MemoryCost(activation=activation_size(outputs) * 2, parameter=0, temp=0, buffer=0)
fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(outputs) * 2, parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(outputs) * bwd_mem_out_factor,
bwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(outputs) * bwd_mem_out_factor,
parameter=0,
temp=activation_size(outputs) * bwd_mem_tmp_factor,
temp=compute_size_in_bytes(outputs) * bwd_mem_tmp_factor,
buffer=0)
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation,

View File

@@ -2,9 +2,9 @@ from typing import List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register

View File

@@ -15,11 +15,11 @@ from colossalai.tensor.sharding_spec import ShardingSpec
from .constants import INPLACE_MODULE, INPLACE_OPS, NO_SAVE_ACTIVATION
from .registry import meta_register
__all__ = ['MetaInfo']
__all__ = ['ShardMetaInfo']
class MetaInfo:
"""MetaInfo class
class ShardMetaInfo:
"""ShardMetaInfo class
This class is used to store meta info based on sharding strategy and the given
target function.
"""
@@ -46,9 +46,9 @@ class MetaInfo:
# target function
self._target = target
# compute metainfo if possible
# compute shard_metainfo if possible
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
self.compute_shard_metainfo()
@property
def strategy(self) -> ShardingStrategy:
@@ -62,13 +62,13 @@ class MetaInfo:
def strategy(self, strategy: ShardingStrategy) -> None:
self._strategy = strategy
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
self.compute_shard_metainfo()
@target.setter
def target(self, target: Callable) -> None:
self._target = target
if self._strategy is not None and self._target is not None:
self.compute_metainfo()
self.compute_shard_metainfo()
def compute_sharded_opdata(self, operation_data: OperationData, sharding_spec: ShardingSpec):
"""
@@ -93,7 +93,7 @@ class MetaInfo:
return op_data
def compute_metainfo(self):
def compute_shard_metainfo(self):
"""
Compute meta info based on sharding strategy and the given target function.
"""

View File

@@ -4,7 +4,7 @@ import torch
from torch.fx import GraphModule
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply, runtime_comm_spec_apply
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem
from colossalai.tensor.comm_spec import CommSpec
@@ -14,15 +14,15 @@ from colossalai.tensor.sharding_spec import ShardingSpec
shape_consistency_manager = ShapeConsistencyManager()
def _construct_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
target_sharding_spec: ShardingSpec) -> MetaInfo:
def _construct_shard_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
target_sharding_spec: ShardingSpec) -> ShardMetaInfo:
# get comm_action_sequence and total_cost from shape_consistency_manager
_, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency(
origin_sharding_spec, target_sharding_spec)
meta_info = MetaInfo()
meta_info = ShardMetaInfo()
# NOTE: the cost in shape_consistency_manager.mem_cost is the count in number of numel
# get mem cost for MetaInfo
# get mem cost for ShardMetaInfo
mem_cost = shape_consistency_manager.mem_cost(comm_action_sequence)
# extract user that has _meta_data and extract element length
input_node = next(n for n in node._input_nodes if hasattr(n, '_meta_data'))
@@ -36,12 +36,12 @@ def _construct_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
meta_info.memory_cost = mem_cost
# get computation cost for MetaInfo
# get computation cost for ShardMetaInfo
meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length,
total_cost['backward'] * element_length,
total_cost['total'] * element_length)
# get tensor shape for MetaInfo
# get tensor shape for ShardMetaInfo
origin_sharding_spec: ShardingSpec
target_sharding_spec: ShardingSpec
input_shape = origin_sharding_spec.get_sharded_shape_per_device()
@@ -54,7 +54,7 @@ def _construct_meta_info(node: Node, origin_sharding_spec: ShardingSpec,
return meta_info
def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -> MetaInfo:
def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -> ShardMetaInfo:
"""
This method is used to construct `MetaInto` for shape consistency node
"""
@@ -65,17 +65,17 @@ def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -
origin_sharding_spec, target_sharding_spec = origin_spec_dict[node_index], sharding_spec_dict[node_index][
user_node_index]
return _construct_meta_info(node, origin_sharding_spec, target_sharding_spec)
return _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec)
def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> MetaInfo:
def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> ShardMetaInfo:
# extract node_index and op_data_name
node_index, op_data_name = node.args[2], node.args[3]
comm_action = comm_actions_dict[node_index][op_data_name]
if isinstance(comm_action.comm_spec, CommSpec):
# this case is for all_reduce, there will be no memory cost
meta_info = MetaInfo()
meta_info = ShardMetaInfo()
meta_info.memory_cost = TrainCycleItem(MemoryCost(), MemoryCost(), MemoryCost)
output_node = next(n for n in node.users if hasattr(n, '_meta_data'))
element_length = output_node._meta_data.element_size()
@@ -93,7 +93,7 @@ def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> M
# this case will be handled by shape consistency manager
origin_sharding_spec, target_sharding_spec = comm_action.comm_spec['src_spec'], comm_action.comm_spec[
'tgt_spec']
meta_info = _construct_meta_info(node, origin_sharding_spec, target_sharding_spec)
meta_info = _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec)
return meta_info
@@ -105,9 +105,9 @@ def comm_metainfo_pass(gm: GraphModule, sharding_spec_dict: Dict, origin_spec_di
"""
for node in gm.graph.nodes:
if node.target == runtime_apply:
setattr(node, 'best_metainfo', _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict))
setattr(node, 'best_strategy_info', _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict))
elif node.target == runtime_comm_spec_apply:
setattr(node, 'best_metainfo', _runtime_comm_spec_apply_meta_info(node, comm_actions_dict))
setattr(node, 'best_strategy_info', _runtime_comm_spec_apply_meta_info(node, comm_actions_dict))
else:
pass
return gm

View File

@@ -7,7 +7,7 @@ import torch.fx
from torch.fx import GraphModule
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo
from colossalai.auto_parallel.passes.constants import OUTPUT_SAVED_MOD, OUTPUT_SAVED_OPS
from colossalai.fx._compatibility import compatibility
from colossalai.fx.profiler import GraphInfo
@@ -96,12 +96,12 @@ class MetaInfoProp:
"""
Handle other kind of nodes
"""
assert hasattr(node, 'best_metainfo'), f"Cannot find best_metainfo in node {node}, {node.op}"
assert hasattr(node, 'best_strategy_info'), f"Cannot find best_strategy_info in node {node}, {node.op}"
graph_info = GraphInfo()
meta_info = node.best_metainfo
meta_info: MetaInfo
meta_info = node.best_strategy_info
meta_info: ShardMetaInfo
# set data_ptr for input_tensor in MetaInfo class
# set data_ptr for input_tensor in ShardMetaInfo class
input_tensors: List[torch.Tensor] = meta_info.fwd_in
buffer_tensors: List[torch.Tensor] = meta_info.fwd_buffer
output_tensors: List[torch.Tensor] = meta_info.fwd_out

View File

@@ -4,7 +4,7 @@ from typing import Dict, List
import torch
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai._analyzer.fx.node_util import MetaInfo
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
CommAction,
CommType,
@@ -128,9 +128,10 @@ def _shape_consistency_apply(gm: torch.fx.GraphModule):
runtime_apply,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
if 'activation_checkpoint' in user_node.meta:
shape_consistency_node.meta['activation_checkpoint'] = user_node.meta['activation_checkpoint']
if hasattr(user_node.meta['info'], 'activation_checkpoint'):
MetaInfo(shape_consistency_node,
mod_dir=user_node.meta['info'].mod_dir,
activation_checkpoint=tuple(user_node.meta['info'].activation_checkpoint))
new_args = list(user_node.args)
new_kwargs = dict(user_node.kwargs)
# the origin node may be a positional argument or key word argument of user node
@@ -210,9 +211,10 @@ def _comm_spec_apply(gm: torch.fx.GraphModule):
# substitute the origin node with comm_spec_apply_node
new_kwargs[str(node)] = comm_spec_apply_node
user.kwargs = new_kwargs
if 'activation_checkpoint' in node.meta:
comm_spec_apply_node.meta['activation_checkpoint'] = node.meta['activation_checkpoint']
if hasattr(node.meta['info'], 'activation_checkpoint'):
MetaInfo(comm_spec_apply_node,
mod_dir=node.meta['info'].mod_dir,
activation_checkpoint=tuple(node.meta['info'].activation_checkpoint))
return gm

View File

@@ -6,6 +6,7 @@ import torch
from torch.fx import symbolic_trace
from torch.fx.node import Node
from colossalai._analyzer.fx.node_util import MetaInfo
from colossalai.auto_parallel.tensor_shard.constants import RESHAPE_FUNC_OP
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
CommAction,
@@ -74,9 +75,9 @@ def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int],
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
str(node))
# attach the corresponding metainfo if node has the attribute `metainfo_vector`
if hasattr(node, 'metainfo_vector'):
setattr(node, 'best_metainfo', node.metainfo_vector[strategy_index])
# attach the corresponding metainfo if node has the attribute `strategies_info`
if hasattr(node, 'strategies_info'):
setattr(node, 'best_strategy_info', node.strategies_info[strategy_index])
# the dict to get input sharding specs of user node
sharding_spec_convert_dict = {}
@@ -172,8 +173,11 @@ def size_value_converting_pass(gm: torch.fx.GraphModule, device_mesh: DeviceMesh
# It will be used to replace the original node with processing node in slice object
node_pairs[node] = size_processing_node
size_processing_node._meta_data = node._meta_data
if 'activation_checkpoint' in node.meta:
size_processing_node.meta['activation_checkpoint'] = node.meta['activation_checkpoint']
if hasattr(node.meta['info'], 'activation_checkpoint'):
MetaInfo(size_processing_node,
mod_dir=node.meta['info'].mod_dir,
activation_checkpoint=tuple(node.meta['info'].activation_checkpoint))
user_list = list(node.users.keys())
for user in user_list:

View File

@@ -6,6 +6,10 @@ import torch.nn as nn
from torch.fx import GraphModule
from torch.fx.graph import Graph
from colossalai._analyzer.fx.codegen import ActivationCheckpointCodeGen
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
from colossalai.auto_parallel.tensor_shard.options import DataloaderOption, ShardOption, SolverOptions, SolverPerference
@@ -13,8 +17,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.alpha_beta_profiler import AlphaBetaProfiler
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.tracer import ColoTracer
from colossalai.tensor.sharding_spec import ShardingSpec
@@ -126,6 +128,7 @@ def solve_solution(gm: ColoGraphModule, strategy_constructor: StrategiesConstruc
def transform_to_sharded_model(gm: ColoGraphModule,
meta_args: Dict,
solution: List[int],
device_mesh: DeviceMesh,
strategies_constructor: StrategiesConstructor,
@@ -142,6 +145,7 @@ def transform_to_sharded_model(gm: ColoGraphModule,
strategies_constructor,
overlap=overlap)
gm = runtime_apply_pass(gm)
shape_prop_pass(gm, *meta_args.values(), sharding_spec_dict, origin_spec_dict, comm_actions_dict)
gm.recompile()
sharding_spec_dicts = (sharding_spec_dict, origin_spec_dict, comm_actions_dict)
@@ -243,10 +247,13 @@ def initialize_model(model: nn.Module,
solution will be used to debug or help to analyze the sharding result. Therefore, we will not just
return a series of integers, but return the best strategies.
'''
tracer = ColoTracer(trace_act_ckpt=True)
tracer = ColoTracer(trace_act_ckpt=True, bias_addition_split=True)
graph = tracer.trace(root=model, meta_args=meta_args)
graph.set_codegen(ActivationCheckpointCodeGen())
gm = ColoGraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *meta_args.values())
gm.recompile()
strategies_constructor = build_strategy_constructor(graph,
@@ -261,7 +268,9 @@ def initialize_model(model: nn.Module,
if save_solver_solution:
torch.save(solution, solution_path)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, solution, device_mesh, strategies_constructor, overlap)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, meta_args, solution, device_mesh, strategies_constructor,
overlap)
model_to_return = ModuleWrapper(gm, *sharding_spec_dicts)
if return_solution:

View File

@@ -2,8 +2,6 @@ from typing import Dict, List
import torch
from colossalai.auto_parallel.meta_profiler.metainfo import MetaInfo
from ..sharding_strategy import OperationData, OperationDataType, StrategiesVector
from .node_handler import MetaInfoModuleHandler, ModuleHandler
from .registry import operator_registry

View File

@@ -4,7 +4,7 @@ from typing import Dict, List, Tuple, Union
import torch
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler.metainfo import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler.shard_metainfo import ShardMetaInfo, meta_register
from colossalai.auto_parallel.tensor_shard.options import ShardOption, SolverPerference
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationData,
@@ -258,7 +258,7 @@ class MetaInfoNodeHandler(NodeHandler):
def register_strategy(self, compute_resharding_cost: bool = True) -> StrategiesVector:
"""
This method is inherited from NodeHandler. It will register the strategies first,
and rewrite the memory_cost and compute_cost of the strategy using the MetaInfo class.
and rewrite the memory_cost and compute_cost of the strategy using the ShardMetaInfo class.
"""
super().register_strategy(compute_resharding_cost=compute_resharding_cost)
target = self.get_target_function()
@@ -266,15 +266,15 @@ class MetaInfoNodeHandler(NodeHandler):
# is not patched, we will use the default cost model to compute the cost.
# TODO: patch all torch functions and modules to make it clean
if meta_register.has(target.__class__) or meta_register.has(target):
metainfo_vector = []
strategies_info = []
for strategy in self.strategies_vector:
metainfo = MetaInfo(strategy, target)
metainfo = ShardMetaInfo(strategy, target)
strategy.compute_cost = metainfo.compute_cost
strategy.memory_cost = metainfo.memory_cost
metainfo_vector.append(metainfo)
strategies_info.append(metainfo)
# attach metainfos to the handler
setattr(self, "metainfo_vector", metainfo_vector)
setattr(self, "strategies_info", strategies_info)
else:
logger = get_dist_logger()
@@ -313,7 +313,7 @@ class MetaInfoModuleHandler(ModuleHandler):
def register_strategy(self, compute_resharding_cost: bool = True) -> StrategiesVector:
"""
This method is inherited from NodeHandler. It will register the strategies first,
and rewrite the memory_cost and compute_cost of the strategy using the MetaInfo class.
and rewrite the memory_cost and compute_cost of the strategy using the ShardMetaInfo class.
"""
super().register_strategy(compute_resharding_cost=compute_resharding_cost)
target = self.get_target_function()
@@ -321,15 +321,15 @@ class MetaInfoModuleHandler(ModuleHandler):
# is not patched, we will use the default cost model to compute the cost.
# TODO: patch all torch functions and modules to make it clean
if meta_register.has(target.__class__) or meta_register.has(target):
metainfo_vector = []
strategies_info = []
for strategy in self.strategies_vector:
metainfo = MetaInfo(strategy, target)
metainfo = ShardMetaInfo(strategy, target)
strategy.compute_cost = metainfo.compute_cost
strategy.memory_cost = metainfo.memory_cost
metainfo_vector.append(metainfo)
strategies_info.append(metainfo)
# attach metainfos to the handler
setattr(self, "metainfo_vector", metainfo_vector)
setattr(self, "strategies_info", strategies_info)
else:
logger = get_dist_logger()

View File

@@ -137,9 +137,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# call_function node
elif node.op == 'call_function':
@@ -150,9 +150,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# call_method node
elif node.op == 'call_method':
@@ -163,9 +163,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# output node
elif node.op == 'output':