mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-27 12:43:02 +00:00
[autoparallel]integrate auto parallel feature with new tracer (#3408)
* [autoparallel] integrate new analyzer in module level * unify the profiling method * polish * fix no codegen bug * fix pass bug * fix liveness test * polish
This commit is contained in:
@@ -2,6 +2,8 @@ from typing import Callable, Dict, List, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai._analyzer._subclasses.flop_tensor import flop_mapping
|
||||
from colossalai._analyzer.fx.node_util import compute_size_in_bytes
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
MemoryCost,
|
||||
OperationData,
|
||||
@@ -10,8 +12,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from ..registry import meta_register
|
||||
@@ -77,17 +77,18 @@ def batchnormnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleIt
|
||||
# calculate memory cost
|
||||
# the fwd activation cost is output plus saved mean and saved inv std
|
||||
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, mean_tensor, var_tensor]),
|
||||
parameter=activation_size([weight_tensor, bias_tensor]),
|
||||
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
|
||||
[input_tensor, output_tensor, mean_tensor, var_tensor]),
|
||||
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
|
||||
temp=0,
|
||||
buffer=activation_size([mean_tensor, var_tensor]))
|
||||
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
|
||||
|
||||
# the bwd memory cost is quite tricky here, BatchNorm will remove saved mean
|
||||
# and saved inv std during backward phase
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor]),
|
||||
parameter=activation_size([weight_tensor, bias_tensor]),
|
||||
temp=activation_size([mean_tensor, var_tensor]),
|
||||
buffer=activation_size([mean_tensor, var_tensor]))
|
||||
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor]),
|
||||
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
|
||||
temp=compute_size_in_bytes([mean_tensor, var_tensor]),
|
||||
buffer=compute_size_in_bytes([mean_tensor, var_tensor]))
|
||||
|
||||
# total cost is the sum of forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
@@ -131,15 +132,16 @@ def layernorm_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem
|
||||
|
||||
# memory cost
|
||||
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, weight_tensor, bias_tensor]),
|
||||
parameter=activation_size([weight_tensor, bias_tensor]),
|
||||
fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes(
|
||||
[input_tensor, output_tensor, weight_tensor, bias_tensor]),
|
||||
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
|
||||
temp=0,
|
||||
buffer=activation_size([running_mean, running_var]))
|
||||
buffer=compute_size_in_bytes([running_mean, running_var]))
|
||||
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor, bias_tensor]),
|
||||
parameter=activation_size([weight_tensor, bias_tensor]),
|
||||
temp=activation_size([running_mean, running_var]),
|
||||
buffer=activation_size([running_mean, running_var]))
|
||||
bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]),
|
||||
parameter=compute_size_in_bytes([weight_tensor, bias_tensor]),
|
||||
temp=compute_size_in_bytes([running_mean, running_var]),
|
||||
buffer=compute_size_in_bytes([running_mean, running_var]))
|
||||
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
|
||||
|
Reference in New Issue
Block a user