[autoparallel]integrate auto parallel feature with new tracer (#3408)

* [autoparallel] integrate new analyzer in module level

* unify the profiling method

* polish

* fix no codegen bug

* fix pass bug

* fix liveness test

* polish
This commit is contained in:
YuliangLiu0306
2023-04-04 17:40:45 +08:00
committed by GitHub
parent 573af84184
commit ffcdbf0f65
46 changed files with 396 additions and 470 deletions

View File

@@ -6,6 +6,10 @@ import torch.nn as nn
from torch.fx import GraphModule
from torch.fx.graph import Graph
from colossalai._analyzer.fx.codegen import ActivationCheckpointCodeGen
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
from colossalai.auto_parallel.tensor_shard.options import DataloaderOption, ShardOption, SolverOptions, SolverPerference
@@ -13,8 +17,6 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.alpha_beta_profiler import AlphaBetaProfiler
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.tracer import ColoTracer
from colossalai.tensor.sharding_spec import ShardingSpec
@@ -126,6 +128,7 @@ def solve_solution(gm: ColoGraphModule, strategy_constructor: StrategiesConstruc
def transform_to_sharded_model(gm: ColoGraphModule,
meta_args: Dict,
solution: List[int],
device_mesh: DeviceMesh,
strategies_constructor: StrategiesConstructor,
@@ -142,6 +145,7 @@ def transform_to_sharded_model(gm: ColoGraphModule,
strategies_constructor,
overlap=overlap)
gm = runtime_apply_pass(gm)
shape_prop_pass(gm, *meta_args.values(), sharding_spec_dict, origin_spec_dict, comm_actions_dict)
gm.recompile()
sharding_spec_dicts = (sharding_spec_dict, origin_spec_dict, comm_actions_dict)
@@ -243,10 +247,13 @@ def initialize_model(model: nn.Module,
solution will be used to debug or help to analyze the sharding result. Therefore, we will not just
return a series of integers, but return the best strategies.
'''
tracer = ColoTracer(trace_act_ckpt=True)
tracer = ColoTracer(trace_act_ckpt=True, bias_addition_split=True)
graph = tracer.trace(root=model, meta_args=meta_args)
graph.set_codegen(ActivationCheckpointCodeGen())
gm = ColoGraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *meta_args.values())
gm.recompile()
strategies_constructor = build_strategy_constructor(graph,
@@ -261,7 +268,9 @@ def initialize_model(model: nn.Module,
if save_solver_solution:
torch.save(solution, solution_path)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, solution, device_mesh, strategies_constructor, overlap)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, meta_args, solution, device_mesh, strategies_constructor,
overlap)
model_to_return = ModuleWrapper(gm, *sharding_spec_dicts)
if return_solution:

View File

@@ -2,8 +2,6 @@ from typing import Dict, List
import torch
from colossalai.auto_parallel.meta_profiler.metainfo import MetaInfo
from ..sharding_strategy import OperationData, OperationDataType, StrategiesVector
from .node_handler import MetaInfoModuleHandler, ModuleHandler
from .registry import operator_registry

View File

@@ -4,7 +4,7 @@ from typing import Dict, List, Tuple, Union
import torch
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler.metainfo import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler.shard_metainfo import ShardMetaInfo, meta_register
from colossalai.auto_parallel.tensor_shard.options import ShardOption, SolverPerference
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationData,
@@ -258,7 +258,7 @@ class MetaInfoNodeHandler(NodeHandler):
def register_strategy(self, compute_resharding_cost: bool = True) -> StrategiesVector:
"""
This method is inherited from NodeHandler. It will register the strategies first,
and rewrite the memory_cost and compute_cost of the strategy using the MetaInfo class.
and rewrite the memory_cost and compute_cost of the strategy using the ShardMetaInfo class.
"""
super().register_strategy(compute_resharding_cost=compute_resharding_cost)
target = self.get_target_function()
@@ -266,15 +266,15 @@ class MetaInfoNodeHandler(NodeHandler):
# is not patched, we will use the default cost model to compute the cost.
# TODO: patch all torch functions and modules to make it clean
if meta_register.has(target.__class__) or meta_register.has(target):
metainfo_vector = []
strategies_info = []
for strategy in self.strategies_vector:
metainfo = MetaInfo(strategy, target)
metainfo = ShardMetaInfo(strategy, target)
strategy.compute_cost = metainfo.compute_cost
strategy.memory_cost = metainfo.memory_cost
metainfo_vector.append(metainfo)
strategies_info.append(metainfo)
# attach metainfos to the handler
setattr(self, "metainfo_vector", metainfo_vector)
setattr(self, "strategies_info", strategies_info)
else:
logger = get_dist_logger()
@@ -313,7 +313,7 @@ class MetaInfoModuleHandler(ModuleHandler):
def register_strategy(self, compute_resharding_cost: bool = True) -> StrategiesVector:
"""
This method is inherited from NodeHandler. It will register the strategies first,
and rewrite the memory_cost and compute_cost of the strategy using the MetaInfo class.
and rewrite the memory_cost and compute_cost of the strategy using the ShardMetaInfo class.
"""
super().register_strategy(compute_resharding_cost=compute_resharding_cost)
target = self.get_target_function()
@@ -321,15 +321,15 @@ class MetaInfoModuleHandler(ModuleHandler):
# is not patched, we will use the default cost model to compute the cost.
# TODO: patch all torch functions and modules to make it clean
if meta_register.has(target.__class__) or meta_register.has(target):
metainfo_vector = []
strategies_info = []
for strategy in self.strategies_vector:
metainfo = MetaInfo(strategy, target)
metainfo = ShardMetaInfo(strategy, target)
strategy.compute_cost = metainfo.compute_cost
strategy.memory_cost = metainfo.memory_cost
metainfo_vector.append(metainfo)
strategies_info.append(metainfo)
# attach metainfos to the handler
setattr(self, "metainfo_vector", metainfo_vector)
setattr(self, "strategies_info", strategies_info)
else:
logger = get_dist_logger()

View File

@@ -137,9 +137,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# call_function node
elif node.op == 'call_function':
@@ -150,9 +150,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# call_method node
elif node.op == 'call_method':
@@ -163,9 +163,9 @@ class StrategiesConstructor:
shard_option=self.solver_options.shard_option,
solver_perference=self.solver_options.solver_perference)
handler.register_strategy()
# attach metainfo_vector to node
if hasattr(handler, 'metainfo_vector'):
setattr(node, 'metainfo_vector', handler.metainfo_vector)
# attach strategies_info to node
if hasattr(handler, 'strategies_info'):
setattr(node, 'strategies_info', handler.strategies_info)
# output node
elif node.op == 'output':