[autoparallel]integrate auto parallel feature with new tracer (#3408)

* [autoparallel] integrate new analyzer in module level

* unify the profiling method

* polish

* fix no codegen bug

* fix pass bug

* fix liveness test

* polish
This commit is contained in:
YuliangLiu0306
2023-04-04 17:40:45 +08:00
committed by GitHub
parent 573af84184
commit ffcdbf0f65
46 changed files with 396 additions and 470 deletions

View File

@@ -1,10 +1,12 @@
import pytest
import torch
import torch.nn.functional as F
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.passes.runtime_preparation_pass import size_value_converting_pass
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.tracer import ColoTracer
from colossalai.tensor.sharding_spec import ShardingSpec
@@ -33,6 +35,7 @@ def recover_narrow(gm, narrow_node):
return gm
@pytest.mark.skip('ShapeProp is not compatible with PyTorch 1.11.0')
def test_size_value_converting_pass():
model = TestModule()
physical_mesh_id = torch.arange(0, 4)
@@ -40,14 +43,14 @@ def test_size_value_converting_pass():
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
meta_args = {'x': torch.rand(4, 8).to('meta')}
input = torch.rand(4, 8)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
graph = tracer.trace(root=model, meta_args=meta_args)
x_node = list(graph.nodes)[0]
x_sharding_spec = ShardingSpec(device_mesh, entire_shape=(4, 8), dim_partition_dict={0: [0]})
setattr(x_node, 'sharding_spec', x_sharding_spec)
gm = ColoGraphModule(model, graph)
gm = insert_narrow(gm, x_node)
shape_prop_pass(gm, *meta_args.values())
gm.recompile()
size = gm(input)
assert size == torch.Size([2, 8])

View File

@@ -4,7 +4,12 @@ import pytest
import torch
import torch.multiprocessing as mp
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
@@ -77,6 +82,7 @@ def check_conv_module(rank, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_bias_addition_module():

View File

@@ -8,13 +8,15 @@ import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from transformers.pytorch_utils import Conv1D
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.tracer import ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
@@ -43,6 +45,7 @@ def check_act_ckpt(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = GPT2MLPWithCkpt(intermediate_size=4 * HIDDEN_SIZE, hidden_size=HIDDEN_SIZE)
input = torch.rand(1, 64, HIDDEN_SIZE)
input_sample = {
'hidden_states': torch.rand(1, 64, HIDDEN_SIZE).to('meta'),
}
@@ -54,10 +57,11 @@ def check_act_ckpt(rank, world_size, port):
gm = initialize_model(model, input_sample, device_mesh)
code = gm.module.graph.python_code('self').src
assert "runtime_comm_spec_apply_1 = colossalai_auto_parallel_passes_runtime_apply_pass_runtime_comm_spec_apply(linear_1, comm_actions_dict, 12, 'linear_1')" in code
assert "view_3 = colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, False, view_1, comm_actions_dict, use_reentrant=True)" in code
assert "view_3 = torch.utils.checkpoint.checkpoint(self.checkpoint_0, view_1, comm_actions_dict, use_reentrant=False)" in code
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_mlp_layer():

View File

@@ -6,7 +6,12 @@ import torch
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
@@ -93,6 +98,7 @@ def check_compatibility_with_ddp(rank, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_compatibility_with_ddp():

View File

@@ -6,7 +6,12 @@ import torch
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
try:
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
@@ -101,6 +106,7 @@ def check_auto_parallel_with_gemini(rank, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason='No codegen found')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_auto_parallel_with_gemini():

View File

@@ -5,8 +5,11 @@ import torch.nn as nn
from torch.fx import GraphModule
from transformers.pytorch_utils import Conv1D
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.utils.factory import find_repeat_blocks
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.testing import parameterize
from colossalai.testing.pytest_wrapper import run_on_environment_flag
@@ -83,11 +86,12 @@ def test_repeat_blocks(model_cls):
model = model_cls(4 * HIDDEN_DIM, HIDDEN_DIM, NUM_REPEAT_BLOCKS)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
input_sample = {'x': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta')}
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
gm.recompile()
node_list = list(graph.nodes)

View File

@@ -10,15 +10,23 @@ import torch.multiprocessing as mp
import transformers
from torch.fx import GraphModule
from colossalai.auto_parallel.tensor_shard.initialize import (
ModuleWrapper,
build_strategy_constructor,
solve_solution,
transform_to_sharded_model,
)
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
try:
from colossalai.auto_parallel.tensor_shard.initialize import (
ModuleWrapper,
build_strategy_constructor,
solve_solution,
transform_to_sharded_model,
)
NO_CODEGEN = False
except:
NO_CODEGEN = True
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingSpec
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.shape_consistency import to_global
@@ -52,9 +60,8 @@ def _check_module_grad(module: torch.nn.Module, origin_param_dict: Dict[str, tor
param_sharding_spec = best_sharding_spec_dict[new_name]
grad_to_compare = copy.deepcopy(param_grad)
param_grad_global = to_global(grad_to_compare, param_sharding_spec)
try:
assert_close_loose(param_grad_global, origin_param_grad, rtol=1e-03, atol=1e-03)
assert_close_loose(param_grad_global, origin_param_grad, rtol=1e-03, atol=1e-05)
except:
difference = param_grad_global - origin_param_grad
avg_diff = difference.abs().sum() / difference.numel()
@@ -66,7 +73,7 @@ def check_attention_layer(rank, model_cls, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
config = transformers.GPT2Config(n_position=64, n_layer=1, n_head=16, n_embd=HIDDEN_DIM)
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=16, n_embd=HIDDEN_DIM)
if model_cls == GPT2MLP:
model = model_cls(intermediate_size=4 * config.hidden_size, config=config).to('cuda')
@@ -111,15 +118,17 @@ def check_attention_layer(rank, model_cls, world_size, port):
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
graph = tracer.trace(root=model, meta_args=meta_input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *meta_input_sample.values())
gm.recompile()
strategies_constructor = build_strategy_constructor(graph, device_mesh, 'standard', 'replicated', 'standard')
solution = solve_solution(gm, strategies_constructor, memory_budget=-1)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, solution, device_mesh, strategies_constructor)
gm, sharding_spec_dicts = transform_to_sharded_model(gm, meta_input_sample, solution, device_mesh,
strategies_constructor)
gm = ModuleWrapper(gm, *sharding_spec_dicts)
nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies]
@@ -176,6 +185,7 @@ def check_attention_layer(rank, model_cls, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.skipif(NO_CODEGEN, reason="no codegen module")
@pytest.mark.dist
@parameterize('model_cls', [GPT2MLP, GPT2Block, GPT2Attention, GPT2Model])
@rerun_if_address_is_in_use()

View File

@@ -3,11 +3,12 @@ import torch.nn as nn
import transformers
from torch.fx import GraphModule
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.testing import parameterize
from colossalai.testing.pytest_wrapper import run_on_environment_flag
@@ -21,7 +22,7 @@ HIDDEN_DIM = 384
@run_on_environment_flag(name='AUTO_PARALLEL')
@parameterize('model_cls', [GPT2Block, GPT2Attention, GPT2MLP, GPT2Model])
def test_self_attention_block(model_cls):
config = transformers.GPT2Config(n_position=64, n_layer=12, n_head=16, n_embd=HIDDEN_DIM)
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=16, n_embd=HIDDEN_DIM)
if model_cls == GPT2MLP:
model = model_cls(intermediate_size=4 * config.hidden_size, config=config)
else:
@@ -33,7 +34,7 @@ def test_self_attention_block(model_cls):
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
shape_consistency_manager = ShapeConsistencyManager()
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
if model_cls == GPT2MLP:
input_sample = {
'hidden_states': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta'),
@@ -52,6 +53,7 @@ def test_self_attention_block(model_cls):
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
print(gm.graph)
gm.recompile()
solver_options = SolverOptions()

View File

@@ -1,8 +1,11 @@
import pytest
import torch
import torch.nn as nn
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.solver import GraphAnalyser
from colossalai.fx import ColoGraphModule, ColoTracer
class LinearModel(nn.Module):
@@ -22,15 +25,14 @@ class LinearModel(nn.Module):
return out
@pytest.mark.skip('meta tensor has some bugs in 1.11')
def test_liveness_analysis():
model = LinearModel()
tracer = ColoTracer()
graph = tracer.trace(model,
meta_args={
'x1': torch.rand(4, 4, device='meta'),
'x2': torch.rand(4, 4, device='meta')
})
tracer = ColoTracer(bias_addition_split=True)
meta_args = {'x1': torch.rand(4, 4, device='meta'), 'x2': torch.rand(4, 4, device='meta')}
graph = tracer.trace(model, meta_args=meta_args)
gm = ColoGraphModule(root=model, graph=graph, class_name=model.__class__.__name__)
shape_prop_pass(gm, *meta_args.values())
graph_analyser = GraphAnalyser(gm)
liveness_list = graph_analyser.liveness_analysis()

View File

@@ -24,7 +24,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")

View File

@@ -17,7 +17,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
class MyModule(nn.Module):

View File

@@ -24,7 +24,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")

View File

@@ -23,7 +23,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy, print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
def _batchnorm_module_mem_test(rank, world_size, port):

View File

@@ -24,7 +24,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
class SplitModule(nn.Module):

View File

@@ -22,7 +22,7 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo, meta_register
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")

View File

@@ -5,16 +5,19 @@ from typing import Dict, List
import torch
from torch.fx import GraphModule
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType, TrainCycleItem
from colossalai.auto_parallel.tensor_shard.solver import StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
if torch.__version__ >= '1.12.0':
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo
def mem_test_for_node_strategy(rank: int,
@@ -30,14 +33,16 @@ def mem_test_for_node_strategy(rank: int,
model_to_shard, args_to_shard, kwargs_to_shard = copy.deepcopy(model), copy.deepcopy(input_args), copy.deepcopy(
input_kwargs)
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
input_sample = {}
for input_arg, meta_arg_name in zip(input_args, meta_arg_names):
input_sample[meta_arg_name] = torch.rand(input_arg.shape).to('meta')
for meta_kwarg_name, input_kwarg in input_kwargs.items():
input_sample[meta_kwarg_name] = torch.rand(input_kwarg.shape).to('meta')
graph = tracer.trace(root=model_to_shard, meta_args=input_sample)
gm = GraphModule(model_to_shard, graph, model_to_shard.__class__.__name__)
gm = ColoGraphModule(model_to_shard, graph, model_to_shard.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
gm.recompile()
solver_options = SolverOptions()
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
@@ -108,10 +113,10 @@ def mem_test_for_node_strategy(rank: int,
# estimated memory
if target_node.op == "call_module":
metainfo = MetaInfo(target_node.strategies_vector[strategy_index],
target_node.graph.owning_module.get_submodule(target_node.target))
metainfo = ShardMetaInfo(target_node.strategies_vector[strategy_index],
target_node.graph.owning_module.get_submodule(target_node.target))
else:
metainfo = MetaInfo(target_node.strategies_vector[strategy_index], target_node.target)
metainfo = ShardMetaInfo(target_node.strategies_vector[strategy_index], target_node.target)
print("estimated memory:")
print(

View File

@@ -1,126 +0,0 @@
import torch
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.testing.pytest_wrapper import run_on_environment_flag
def _param_resharding_cost_assertion(node):
for strategy in node.strategies_vector:
for prev_node, resharding_cost in strategy.resharding_costs.items():
if strategy.get_op_data_by_name(str(prev_node)).type == OperationDataType.PARAM:
for cost in resharding_cost:
assert cost.fwd == 0
assert cost.bwd == 0
assert cost.total == 0
class LinearModel(torch.nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features)
def forward(self, x):
x = self.linear(x)
x = x * 2
return x
class ConvModel(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
bias=bias)
def forward(self, x):
x = self.conv(x)
x = x * 2
return x
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_linear_module():
model = LinearModel(4, 8)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %linear_weight : [#users=1] = get_attr[target=linear.weight]
# %linear_bias : [#users=1] = get_attr[target=linear.bias]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {})
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
# return mul
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 4).to('meta')})
# def forward(self, x : torch.Tensor):
# linear_weight = self.linear.weight
# linear_bias = self.linear.bias
# linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None
# add = linear + linear_bias; linear = linear_bias = None
# mul = add * 2; add = None
# return mul
gm = ColoGraphModule(model, graph)
gm.recompile()
node_list = list(graph.nodes)
solver_options = SolverOptions()
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
linear_node = node_list[3]
_param_resharding_cost_assertion(linear_node)
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_conv_module():
model = ConvModel(3, 6, 2)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv_weight : [#users=1] = get_attr[target=conv.weight]
# %conv_bias : [#users=1] = get_attr[target=conv.bias]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {})
# %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {})
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
# return mul
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')})
# def forward(self, x : torch.Tensor):
# conv_weight = self.conv.weight
# conv_bias = self.conv.bias
# conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None
# view = conv_bias.view([1, -1, 1, 1]); conv_bias = None
# add = conv2d + view; conv2d = view = None
# mul = add * 2; add = None
# return mul
gm = ColoGraphModule(model, graph)
gm.recompile()
node_list = list(graph.nodes)
conv_node = node_list[3]
solver_options = SolverOptions()
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
_param_resharding_cost_assertion(conv_node)
if __name__ == '__main__':
test_linear_module()
test_conv_module()

View File

@@ -1,86 +0,0 @@
import copy
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
class ConvModel(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.conv = nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, bias=False)
def forward(self, x):
x = self.conv(x)
x = torch.flatten(x)
return x
def check_apply(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
input = torch.rand(4, 4, 4, 4).cuda()
test_input = copy.deepcopy(input)
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
# return conv
model = ConvModel(4, 4).cuda()
test_model = copy.deepcopy(model)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
meta_args = {'x': torch.rand(4, 4, 4, 4).to('meta')}
gm = initialize_model(model, meta_args, device_mesh)
output = gm(input)
origin_output = test_model(test_input)
assert output.equal(origin_output)
origin_loss = origin_output.sum()
loss = output.sum()
origin_loss.backward()
loss.backward()
grad_0 = test_model.conv.weight.grad.narrow(0, 0, 1)
grad_1 = test_model.conv.weight.grad.narrow(0, 1, 1)
grad_2 = test_model.conv.weight.grad.narrow(0, 2, 1)
grad_3 = test_model.conv.weight.grad.narrow(0, 3, 1)
if rank == 0:
assert_close(gm.module.conv.weight.grad.data, grad_0.data)
elif rank == 1:
assert_close(gm.module.conv.weight.grad.data, grad_1.data)
elif rank == 2:
assert_close(gm.module.conv.weight.grad.data, grad_2.data)
elif rank == 3:
assert_close(gm.module.conv.weight.grad.data, grad_3.data)
else:
raise ValueError(f'rank {rank} does not exist.')
# skip this test due to pulp not installed in CI environment
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_apply():
world_size = 4
run_func = partial(check_apply, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_apply()

View File

@@ -2,11 +2,13 @@ import torch
from torch.fx import GraphModule
from torchvision.models import resnet50
from colossalai._analyzer.fx.passes import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.testing.pytest_wrapper import run_on_environment_flag
@@ -20,7 +22,7 @@ def test_cost_graph():
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
shape_consistency_manager = ShapeConsistencyManager()
tracer = ColoTracer()
tracer = ColoTracer(bias_addition_split=True)
model = resnet50(num_classes=100000)
input_sample = {'x': torch.rand(128, 3, 224, 224).to('meta')}
@@ -50,6 +52,7 @@ def test_cost_graph():
# %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
# return fc
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
gm.recompile()
solver_options = SolverOptions()