mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
[analyzer] a minimal implementation of static graph analyzer (#2852)
* [hotfix] meta tensor default device. * [siu] add experimental submodules to main branch. * [siu] * [siu] * [analyzer] init. * [analyzer] readme. * [analyzer] readme. * [analyzer] readme. * [analyzer] readme. * [test] add test. * Update symbolic_trace.py * mark skip tests. * try except. * try except. * try except. * s * init * init * fix * skip * skip --------- Co-authored-by: Daniel Shao <superdainiu@MININT-PVARVID.fareast.corp.microsoft.com> Co-authored-by: Daniel Shao <superdainiu@Daniels-Mac.local>
This commit is contained in:
78
tests/test_analyzer/test_fx/test_mod_dir.py
Normal file
78
tests/test_analyzer/test_fx/test_mod_dir.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
try:
|
||||
from colossalai._analyzer.fx import symbolic_trace
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
class LinearModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_features, out_features, bias):
|
||||
super().__init__()
|
||||
self.linear = torch.nn.Linear(in_features, out_features, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_channel, out_channels, kernel_size, bias) -> None:
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Conv2d(in_channel,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
bias=bias,
|
||||
padding=1,
|
||||
stride=2,
|
||||
dilation=2,
|
||||
groups=3)
|
||||
self.conv_transpose = torch.nn.ConvTranspose2d(out_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
bias=bias,
|
||||
padding=1,
|
||||
stride=2,
|
||||
dilation=2,
|
||||
groups=3)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.conv_transpose(x)
|
||||
return x
|
||||
|
||||
|
||||
class AModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, bias) -> None:
|
||||
super().__init__()
|
||||
self.linear_1 = LinearModel(3, 3, bias)
|
||||
self.linear_2 = LinearModel(3, 3, bias)
|
||||
self.conv = ConvModel(3, 6, 3, bias)
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(x.shape[0]):
|
||||
x = self.linear_1(x)
|
||||
x = self.linear_2(x)
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
|
||||
@pytest.mark.parametrize("bias", [True, False])
|
||||
@pytest.mark.parametrize("bias_addition_split", [True, False])
|
||||
@pytest.mark.parametrize("shape", [(3, 3, 3), (3, 3, 3, 3)])
|
||||
def test_mod_dir(bias, bias_addition_split, shape):
|
||||
model = AModel(bias=bias)
|
||||
x = torch.rand(shape)
|
||||
gm = symbolic_trace(model, meta_args={'x': x}, bias_addition_split=bias_addition_split)
|
||||
for node in gm.graph.nodes:
|
||||
assert len(node.meta['info'].mod_dir), f"{node} should have non-trivial ``mod_dir``."
|
||||
print(node, node.meta['info'].mod_dir)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_mod_dir(True, True, (3, 3, 3))
|
Reference in New Issue
Block a user