mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 20:10:17 +00:00
[analyzer] a minimal implementation of static graph analyzer (#2852)
* [hotfix] meta tensor default device. * [siu] add experimental submodules to main branch. * [siu] * [siu] * [analyzer] init. * [analyzer] readme. * [analyzer] readme. * [analyzer] readme. * [analyzer] readme. * [test] add test. * Update symbolic_trace.py * mark skip tests. * try except. * try except. * try except. * s * init * init * fix * skip * skip --------- Co-authored-by: Daniel Shao <superdainiu@MININT-PVARVID.fareast.corp.microsoft.com> Co-authored-by: Daniel Shao <superdainiu@Daniels-Mac.local>
This commit is contained in:
63
tests/test_analyzer/test_fx/test_shape_prop.py
Normal file
63
tests/test_analyzer/test_fx/test_shape_prop.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import pytest
|
||||
import timm.models as tmm
|
||||
import torch
|
||||
import torchvision.models as tm
|
||||
from .zoo import tm_models, tmm_models
|
||||
|
||||
try:
|
||||
from colossalai._analyzer._subclasses import MetaTensorMode
|
||||
from colossalai._analyzer.fx import symbolic_trace
|
||||
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
|
||||
from colossalai._analyzer.fx.symbolic_profile import register_shape_impl
|
||||
|
||||
|
||||
@register_shape_impl(torch.nn.functional.linear)
|
||||
def linear_impl(*args, **kwargs):
|
||||
assert True
|
||||
return torch.nn.functional.linear(*args, **kwargs)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def _check_gm_validity(gm: torch.fx.GraphModule):
|
||||
for node in gm.graph.nodes:
|
||||
assert node.meta['info'].outputs, f'In {gm.__class__.__name__}, {node} has no output shape.'
|
||||
if node.op in [
|
||||
# 'call_module', # can apply to params
|
||||
# 'call_function', # can apply to params
|
||||
# 'call_method', # can apply to params
|
||||
]:
|
||||
assert node.meta['info'].inputs, f'In {gm.__class__.__name__}, {node} has no input shape.'
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
|
||||
@pytest.mark.parametrize('m', tm_models)
|
||||
def test_torchvision_shape_prop(m):
|
||||
with MetaTensorMode():
|
||||
model = m()
|
||||
data = torch.rand(100, 3, 224, 224)
|
||||
meta_args = {
|
||||
"x": data,
|
||||
}
|
||||
gm = symbolic_trace(model, meta_args=meta_args)
|
||||
shape_prop_pass(gm, data)
|
||||
_check_gm_validity(gm)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
|
||||
@pytest.mark.parametrize('m', tmm_models)
|
||||
def test_timm_shape_prop(m):
|
||||
with MetaTensorMode():
|
||||
model = m()
|
||||
data = torch.rand(100, 3, 224, 224)
|
||||
meta_args = {
|
||||
"x": data,
|
||||
}
|
||||
gm = symbolic_trace(model, meta_args=meta_args)
|
||||
shape_prop_pass(gm, data)
|
||||
_check_gm_validity(gm)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_torchvision_shape_prop(tm.resnet18)
|
||||
test_timm_shape_prop(tmm.vgg11)
|
Reference in New Issue
Block a user