mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 21:40:02 +00:00
[analyzer] a minimal implementation of static graph analyzer (#2852)
* [hotfix] meta tensor default device. * [siu] add experimental submodules to main branch. * [siu] * [siu] * [analyzer] init. * [analyzer] readme. * [analyzer] readme. * [analyzer] readme. * [analyzer] readme. * [test] add test. * Update symbolic_trace.py * mark skip tests. * try except. * try except. * try except. * s * init * init * fix * skip * skip --------- Co-authored-by: Daniel Shao <superdainiu@MININT-PVARVID.fareast.corp.microsoft.com> Co-authored-by: Daniel Shao <superdainiu@Daniels-Mac.local>
This commit is contained in:
82
tests/test_analyzer/test_subclasses/test_aten.py
Normal file
82
tests/test_analyzer/test_subclasses/test_aten.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from typing import Any, Callable, Union
|
||||
import pytest
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
try:
|
||||
from colossalai._analyzer._subclasses import MetaTensor
|
||||
except:
|
||||
pass
|
||||
|
||||
aten = torch.ops.aten
|
||||
|
||||
registered_meta = {
|
||||
('aten.convolution.default', True): [ # (aten ops, requires_backward)
|
||||
(nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
|
||||
(nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4)),
|
||||
(nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4, 4)),
|
||||
(nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
|
||||
(nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
|
||||
dilation=2), torch.rand(2, 3, 4, 4)),
|
||||
(nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
|
||||
dilation=2), torch.rand(2, 3, 4, 4, 4)),
|
||||
],
|
||||
('aten.native_batch_norm.default', True): [
|
||||
(nn.BatchNorm1d(4), torch.rand(2, 4)),
|
||||
(nn.BatchNorm2d(4), torch.rand(1, 4, 4, 4)),
|
||||
(nn.BatchNorm3d(4), torch.rand(1, 4, 4, 4, 4)),
|
||||
],
|
||||
('aten.native_layer_norm.default', True): [(nn.LayerNorm(4), torch.rand(1, 2, 3, 4)),],
|
||||
('aten.avg_pool1d.default', True): [
|
||||
(nn.MaxPool1d(3, stride=2), torch.rand(4, 5, 5)),
|
||||
(nn.AvgPool1d(3, stride=2), torch.rand(4, 5, 5)),
|
||||
(nn.AdaptiveMaxPool1d(3), torch.rand(4, 5, 5)),
|
||||
(nn.AdaptiveAvgPool1d(3), torch.rand(4, 5, 5)),
|
||||
],
|
||||
('aten.avg_pool2d.default', True): [
|
||||
(nn.MaxPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AvgPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AdaptiveMaxPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AdaptiveAvgPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
|
||||
],
|
||||
('aten.relu.default', True): [
|
||||
(nn.ReLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.LeakyReLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.SiLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.GELU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.ELU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Sigmoid(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Tanh(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Hardswish(), torch.rand(4, 3, 1, 2)),
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor) -> Any:
|
||||
assert tensor.shape == meta_tensor.shape, f'the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match.'
|
||||
assert tensor.dtype == meta_tensor.dtype, f'the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match.'
|
||||
assert tensor.stride() == meta_tensor.stride(
|
||||
), f'the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match.'
|
||||
|
||||
|
||||
def run_and_compare(f: Union[nn.Module, Callable], x: torch.Tensor, requires_backward=False) -> Any:
|
||||
x.requires_grad = requires_backward
|
||||
meta_x = MetaTensor(x)
|
||||
x_out, meta_out = f(x), f(meta_x)
|
||||
compare_all(x_out, meta_out)
|
||||
if requires_backward:
|
||||
x_out.sum().backward()
|
||||
meta_out.sum().backward()
|
||||
compare_all(x.grad, meta_x.grad)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
|
||||
def test_meta_aten():
|
||||
for (aten_op, requires_backward), v in registered_meta.items():
|
||||
for f, x in v:
|
||||
run_and_compare(f, x, requires_backward)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_meta_aten()
|
Reference in New Issue
Block a user