1
0
mirror of https://github.com/hpcaitech/ColossalAI.git synced 2025-04-29 20:25:29 +00:00

Compare commits

...

3 Commits
v0.4.9 ... main

Author SHA1 Message Date
flybird11111
46ed5d856b
[ci] update ci ()
* fix for async io

* test for upgrading transformers

* add ci machine

* fix

* fix

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update test_fp16_torch.py

* Update build_on_pr.yml

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fiux

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-04-18 16:40:53 +08:00
Yanjia0
7ecdf9a211
Update README.md ()
Image Change from H100 to H200
2025-04-17 12:07:25 +08:00
duanjunwen
44d4053fec
[HotFix] update load lora model Readme; ()
* [fix] update load lora model Readme;

* [fix] update lora infer readme

* [fix] remove useless comments
2025-03-07 14:14:26 +08:00
11 changed files with 78 additions and 12 deletions

View File

@ -87,10 +87,10 @@ jobs:
name: Build and Test Colossal-AI
needs: detect
if: needs.detect.outputs.anyLibraryFileChanged == 'true'
runs-on: [self-hosted, gpu]
runs-on: ubuntu-latest
container:
image: hpcaitech/pytorch-cuda:2.2.2-12.1.0
options: --gpus all --rm -v /dev/shm -v /data/scratch:/data/scratch
image: image-cloud.luchentech.com/hpcaitech/pytorch-cuda:2.2.2-12.1.0
options: --gpus all --shm-size=2g --rm -v /dev/shm -v /data/scratch:/data/scratch
timeout-minutes: 90
defaults:
run:

View File

@ -38,7 +38,7 @@ Limited Academic Bonuses:
<div align="center">
<a href="https://hpc-ai.com/?utm_source=github&utm_medium=social&utm_campaign=promotion-colossalai">
<img src="https://github.com/hpcaitech/public_assets/blob/main/colossalai/img/2.gif" width="850" />
<img src="https://github.com/hpcaitech/public_assets/blob/main/colossalai/img/2-2.gif" width="850" />
</a>
</div>

View File

@ -892,6 +892,63 @@ The dialogues can by multiple turns and it can contain system prompt. For more d
We use bf16 weights for finetuning. If you downloaded fp8 DeepSeek V3/R1 weights, you can use the [script](https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/fp8_cast_bf16.py) to convert the weights to bf16 via GPU. For Ascend NPU, you can use this [script](https://gitee.com/ascend/ModelZoo-PyTorch/blob/master/MindIE/LLM/DeepSeek/DeepSeek-V2/NPU_inference/fp8_cast_bf16.py).
We have also added details on how to load and reason with lora models.
```python
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
from peft import (
PeftModel
)
import torch
# Set model path
model_name = "Qwen/Qwen2.5-3B"
lora_adapter = "Qwen2.5-3B_lora" # Your lora model Path
merged_model_path = "Qwen2.5-3B_merged"
######
# How to Load lora Model
######
# 1.Load base model
base_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
# 2.Load lora model
peft_model = PeftModel.from_pretrained(
base_model,
lora_adapter,
torch_dtype=torch.bfloat16
)
# 3.Merge lora model
merged_model = peft_model.merge_and_unload()
# 4.Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
pad_token="<|endoftext|>"
)
# 5.Save merged lora model
merged_model.save_pretrained(
merged_model_path,
safe_serialization=True
)
tokenizer.save_pretrained(merged_model_path)
# 6.Run Inference
test_input = tokenizer("Instruction: Finding prime numbers up to 100\nAnswer:", return_tensors="pt").to("cuda")
output = merged_model.generate(**test_input, max_new_tokens=100)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
#### Usage
After preparing the dataset and model weights, you can run the script with the following command:

View File

@ -6,9 +6,10 @@ from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_to_all_single_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
@clear_cache_before_run()
@parameterize("shape", [(4,), (1, 8, 16), (4, 8, 16)])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("async_op", [True, False])
@ -24,6 +25,7 @@ def check_all2all(shape, dtype, async_op):
assert_close(output, output_fp8, rtol=0.1, atol=0.1)
@clear_cache_before_run()
@parameterize("shape", [(8, 8, 16)])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("async_op", [True, False])

View File

@ -6,9 +6,10 @@ from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import _all_to_all_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
@clear_cache_before_run()
@parameterize("shape", [(16, 8, 4)])
@parameterize("scatter_dim", [0, 1, 2])
@parameterize("dtype", [torch.bfloat16, torch.float16])

View File

@ -6,11 +6,12 @@ from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_to_all_single_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
dist.all_to_all_single
@clear_cache_before_run()
@parameterize("shape", [(4), (8, 7), (4, 8, 16)])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("fp8_format", ["e4m3", "e5m2"])

View File

@ -6,9 +6,10 @@ from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import _all_gather_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
@clear_cache_before_run()
@parameterize(
"shape",
[(3, 7, 16)],

View File

@ -5,7 +5,7 @@ from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_reduce_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
@parameterize(
@ -20,6 +20,7 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
(8,),
],
)
@clear_cache_before_run()
@parameterize("dtype", [torch.float16, torch.bfloat16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
@parameterize("async_op", [True, False])

View File

@ -3,9 +3,10 @@ from torch.testing import assert_close
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import cast_from_fp8, cast_from_fp8_pipeline, cast_to_fp8, cast_to_fp8_pipeline
from colossalai.testing import parameterize
from colossalai.testing import clear_cache_before_run, parameterize
@clear_cache_before_run()
@parameterize("shape", [(100, 10), (10, 100), (3, 7), (2, 1), (1, 2), (2, 2), (4, 2), (5,), (4,), (2,)])
@parameterize("dtype", [torch.bfloat16, torch.float16, torch.float32])
@parameterize("fp8_format", ["e4m3", "e5m2"])

View File

@ -8,7 +8,7 @@ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing import assert_close
from colossalai import launch
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
# example modified from https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
@ -28,6 +28,7 @@ class ToyModel(nn.Module):
return self.net2(self.relu(self.net1(x)))
@clear_cache_before_run()
@parameterize("mode", ["grad", "params"])
def run_model(mode):
rank = dist.get_rank()

View File

@ -6,9 +6,10 @@ from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import reduce_scatter_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
@clear_cache_before_run()
@parameterize("shape", [(16, 8, 4)])
@parameterize("scatter_dim", [0, 1, 2])
@parameterize("dtype", [torch.bfloat16, torch.float16])