# modified from tests/kit/model_zoo/transformers/mistral.py from types import MethodType import torch import transformers from transformers import AutoConfig # =============================== # Register single-sentence Mixtral # =============================== def data_gen(): # Generated from following code snippet # # from transformers import AutoModelForCausalLM, AutoTokenizer # tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1") # input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement) # tokenized_input = tokenizer([input], return_tensors="pt") # input_ids = tokenized_input['input_ids'] # attention_mask = tokenized_input['attention_mask'] input_ids = torch.tensor([[1, 22, 55, 77, 532, 349, 43, 22]], dtype=torch.int64) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_lm(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() data["labels"] = data["input_ids"].clone() return data # define output transform function output_transform_fn = lambda x: x # define loss function loss_fn = lambda x: x[0].mean() loss_fn_for_lm = lambda x: x.loss def init_deepseek(): config = AutoConfig.from_pretrained( "deepseek-ai/DeepSeek-V3", hidden_size=128, intermediate_size=320, kv_lora_rank=4, moe_intermediate_size=32, num_attention_heads=4, num_experts_per_tok=4, n_group=4, num_hidden_layers=3, num_key_value_heads=4, first_k_dense_replace=1, q_lora_rank=8, torch_dtype="bfloat16", n_routed_experts=16, topk_group=2, v_head_dim=32, qk_nope_head_dim=32, qk_rope_head_dim=32, trust_remote_code=True, vocab_size=2048, ) if hasattr(config, "pad_token_id"): config.pad_token_id = config.eos_token_id model = transformers.AutoModelForCausalLM.from_config(config, trust_remote_code=True) # enable grad for moe layers for m in model.modules(): if m.__class__.__name__ == "DeepseekV3MoE": m.moe_infer = MethodType(m.moe_infer.__wrapped__, m) return model